| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > or3di | Structured version Visualization version GIF version | ||
| Description: Distributive law for disjunction. (Contributed by Thierry Arnoux, 3-Jul-2017.) |
| Ref | Expression |
|---|---|
| or3di | ⊢ ((𝜑 ∨ (𝜓 ∧ 𝜒 ∧ 𝜏)) ↔ ((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒) ∧ (𝜑 ∨ 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 1089 | . . . 4 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) ↔ ((𝜓 ∧ 𝜒) ∧ 𝜏)) | |
| 2 | 1 | orbi2i 913 | . . 3 ⊢ ((𝜑 ∨ (𝜓 ∧ 𝜒 ∧ 𝜏)) ↔ (𝜑 ∨ ((𝜓 ∧ 𝜒) ∧ 𝜏))) |
| 3 | ordi 1008 | . . 3 ⊢ ((𝜑 ∨ ((𝜓 ∧ 𝜒) ∧ 𝜏)) ↔ ((𝜑 ∨ (𝜓 ∧ 𝜒)) ∧ (𝜑 ∨ 𝜏))) | |
| 4 | ordi 1008 | . . . 4 ⊢ ((𝜑 ∨ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒))) | |
| 5 | 4 | anbi1i 624 | . . 3 ⊢ (((𝜑 ∨ (𝜓 ∧ 𝜒)) ∧ (𝜑 ∨ 𝜏)) ↔ (((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒)) ∧ (𝜑 ∨ 𝜏))) |
| 6 | 2, 3, 5 | 3bitri 297 | . 2 ⊢ ((𝜑 ∨ (𝜓 ∧ 𝜒 ∧ 𝜏)) ↔ (((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒)) ∧ (𝜑 ∨ 𝜏))) |
| 7 | df-3an 1089 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒) ∧ (𝜑 ∨ 𝜏)) ↔ (((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒)) ∧ (𝜑 ∨ 𝜏))) | |
| 8 | 6, 7 | bitr4i 278 | 1 ⊢ ((𝜑 ∨ (𝜓 ∧ 𝜒 ∧ 𝜏)) ↔ ((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒) ∧ (𝜑 ∨ 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∨ wo 848 ∧ w3a 1087 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 |
| This theorem is referenced by: or3dir 32479 |
| Copyright terms: Public domain | W3C validator |