| Metamath
Proof Explorer Theorem List (p. 320 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30888) |
(30889-32411) |
(32412-49816) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | lnfnl 31901 | Basic linearity property of a linear functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
| ⊢ (((𝑇 ∈ LinFn ∧ 𝐴 ∈ ℂ) ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)) → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 𝐶)) = ((𝐴 · (𝑇‘𝐵)) + (𝑇‘𝐶))) | ||
| Theorem | adjcl 31902 | Closure of the adjoint of a Hilbert space operator. (Contributed by NM, 17-Jun-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) → ((adjℎ‘𝑇)‘𝐴) ∈ ℋ) | ||
| Theorem | adj1 31903 | Property of an adjoint Hilbert space operator. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih (𝑇‘𝐵)) = (((adjℎ‘𝑇)‘𝐴) ·ih 𝐵)) | ||
| Theorem | adj2 31904 | Property of an adjoint Hilbert space operator. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇‘𝐴) ·ih 𝐵) = (𝐴 ·ih ((adjℎ‘𝑇)‘𝐵))) | ||
| Theorem | adjeq 31905* | A property that determines the adjoint of a Hilbert space operator. (Contributed by NM, 20-Feb-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆‘𝑦))) → (adjℎ‘𝑇) = 𝑆) | ||
| Theorem | adjadj 31906 | Double adjoint. Theorem 3.11(iv) of [Beran] p. 106. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ dom adjℎ → (adjℎ‘(adjℎ‘𝑇)) = 𝑇) | ||
| Theorem | adjvalval 31907* | Value of the value of the adjoint function. (Contributed by NM, 22-Feb-2006.) (Proof shortened by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) → ((adjℎ‘𝑇)‘𝐴) = (℩𝑤 ∈ ℋ ∀𝑥 ∈ ℋ ((𝑇‘𝑥) ·ih 𝐴) = (𝑥 ·ih 𝑤))) | ||
| Theorem | unopadj2 31908 | The adjoint of a unitary operator is its inverse (converse). Equation 2 of [AkhiezerGlazman] p. 72. (Contributed by NM, 23-Feb-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ UniOp → (adjℎ‘𝑇) = ◡𝑇) | ||
| Theorem | hmopadj 31909 | A Hermitian operator is self-adjoint. (Contributed by NM, 24-Mar-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ HrmOp → (adjℎ‘𝑇) = 𝑇) | ||
| Theorem | hmdmadj 31910 | Every Hermitian operator has an adjoint. (Contributed by NM, 24-Mar-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ HrmOp → 𝑇 ∈ dom adjℎ) | ||
| Theorem | hmopadj2 31911 | An operator is Hermitian iff it is self-adjoint. Definition of Hermitian in [Halmos] p. 41. (Contributed by NM, 9-Apr-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ dom adjℎ → (𝑇 ∈ HrmOp ↔ (adjℎ‘𝑇) = 𝑇)) | ||
| Theorem | hmoplin 31912 | A Hermitian operator is linear. (Contributed by NM, 24-Mar-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ HrmOp → 𝑇 ∈ LinOp) | ||
| Theorem | brafval 31913* | The bra of a vector, expressed as 〈𝐴 ∣ in Dirac notation. See df-bra 31820. (Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℋ → (bra‘𝐴) = (𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐴))) | ||
| Theorem | braval 31914 | A bra-ket juxtaposition, expressed as 〈𝐴 ∣ 𝐵〉 in Dirac notation, equals the inner product of the vectors. Based on definition of bra in [Prugovecki] p. 186. (Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((bra‘𝐴)‘𝐵) = (𝐵 ·ih 𝐴)) | ||
| Theorem | braadd 31915 | Linearity property of bra for addition. (Contributed by NM, 23-May-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((bra‘𝐴)‘(𝐵 +ℎ 𝐶)) = (((bra‘𝐴)‘𝐵) + ((bra‘𝐴)‘𝐶))) | ||
| Theorem | bramul 31916 | Linearity property of bra for multiplication. (Contributed by NM, 23-May-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((bra‘𝐴)‘(𝐵 ·ℎ 𝐶)) = (𝐵 · ((bra‘𝐴)‘𝐶))) | ||
| Theorem | brafn 31917 | The bra function is a functional. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℋ → (bra‘𝐴): ℋ⟶ℂ) | ||
| Theorem | bralnfn 31918 | The Dirac bra function is a linear functional. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℋ → (bra‘𝐴) ∈ LinFn) | ||
| Theorem | bracl 31919 | Closure of the bra function. (Contributed by NM, 23-May-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((bra‘𝐴)‘𝐵) ∈ ℂ) | ||
| Theorem | bra0 31920 | The Dirac bra of the zero vector. (Contributed by NM, 25-May-2006.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.) |
| ⊢ (bra‘0ℎ) = ( ℋ × {0}) | ||
| Theorem | brafnmul 31921 | Anti-linearity property of bra functional for multiplication. (Contributed by NM, 31-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (bra‘(𝐴 ·ℎ 𝐵)) = ((∗‘𝐴) ·fn (bra‘𝐵))) | ||
| Theorem | kbfval 31922* | The outer product of two vectors, expressed as ∣ 𝐴〉〈𝐵 ∣ in Dirac notation. See df-kb 31821. (Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ketbra 𝐵) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) ·ℎ 𝐴))) | ||
| Theorem | kbop 31923 | The outer product of two vectors, expressed as ∣ 𝐴〉〈𝐵 ∣ in Dirac notation, is an operator. (Contributed by NM, 30-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ketbra 𝐵): ℋ⟶ ℋ) | ||
| Theorem | kbval 31924 | The value of the operator resulting from the outer product ∣ 𝐴〉 〈𝐵 ∣ of two vectors. Equation 8.1 of [Prugovecki] p. 376. (Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘𝐶) = ((𝐶 ·ih 𝐵) ·ℎ 𝐴)) | ||
| Theorem | kbmul 31925 | Multiplication property of outer product. (Contributed by NM, 31-May-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) ketbra 𝐶) = (𝐵 ketbra ((∗‘𝐴) ·ℎ 𝐶))) | ||
| Theorem | kbpj 31926 | If a vector 𝐴 has norm 1, the outer product ∣ 𝐴〉〈𝐴 ∣ is the projector onto the subspace spanned by 𝐴. http://en.wikipedia.org/wiki/Bra-ket#Linear%5Foperators. (Contributed by NM, 30-May-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ (normℎ‘𝐴) = 1) → (𝐴 ketbra 𝐴) = (projℎ‘(span‘{𝐴}))) | ||
| Theorem | eleigvec 31927* | Membership in the set of eigenvectors of a Hilbert space operator. (Contributed by NM, 11-Mar-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ (𝑇: ℋ⟶ ℋ → (𝐴 ∈ (eigvec‘𝑇) ↔ (𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ∧ ∃𝑥 ∈ ℂ (𝑇‘𝐴) = (𝑥 ·ℎ 𝐴)))) | ||
| Theorem | eleigvec2 31928 | Membership in the set of eigenvectors of a Hilbert space operator. (Contributed by NM, 18-Mar-2006.) (New usage is discouraged.) |
| ⊢ (𝑇: ℋ⟶ ℋ → (𝐴 ∈ (eigvec‘𝑇) ↔ (𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ∧ (𝑇‘𝐴) ∈ (span‘{𝐴})))) | ||
| Theorem | eleigveccl 31929 | Closure of an eigenvector of a Hilbert space operator. (Contributed by NM, 23-Mar-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ (eigvec‘𝑇)) → 𝐴 ∈ ℋ) | ||
| Theorem | eigvalval 31930 | The eigenvalue of an eigenvector of a Hilbert space operator. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ (eigvec‘𝑇)) → ((eigval‘𝑇)‘𝐴) = (((𝑇‘𝐴) ·ih 𝐴) / ((normℎ‘𝐴)↑2))) | ||
| Theorem | eigvalcl 31931 | An eigenvalue is a complex number. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ (eigvec‘𝑇)) → ((eigval‘𝑇)‘𝐴) ∈ ℂ) | ||
| Theorem | eigvec1 31932 | Property of an eigenvector. (Contributed by NM, 12-Mar-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ (eigvec‘𝑇)) → ((𝑇‘𝐴) = (((eigval‘𝑇)‘𝐴) ·ℎ 𝐴) ∧ 𝐴 ≠ 0ℎ)) | ||
| Theorem | eighmre 31933 | The eigenvalues of a Hermitian operator are real. Equation 1.30 of [Hughes] p. 49. (Contributed by NM, 19-Mar-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) → ((eigval‘𝑇)‘𝐴) ∈ ℝ) | ||
| Theorem | eighmorth 31934 | Eigenvectors of a Hermitian operator with distinct eigenvalues are orthogonal. Equation 1.31 of [Hughes] p. 49. (Contributed by NM, 23-Mar-2006.) (New usage is discouraged.) |
| ⊢ (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ (𝐵 ∈ (eigvec‘𝑇) ∧ ((eigval‘𝑇)‘𝐴) ≠ ((eigval‘𝑇)‘𝐵))) → (𝐴 ·ih 𝐵) = 0) | ||
| Theorem | nmopnegi 31935 | Value of the norm of the negative of a Hilbert space operator. Unlike nmophmi 32001, the operator does not have to be bounded. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
| ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ (normop‘(-1 ·op 𝑇)) = (normop‘𝑇) | ||
| Theorem | lnop0 31936 | The value of a linear Hilbert space operator at zero is zero. Remark in [Beran] p. 99. (Contributed by NM, 13-Aug-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ LinOp → (𝑇‘0ℎ) = 0ℎ) | ||
| Theorem | lnopmul 31937 | Multiplicative property of a linear Hilbert space operator. (Contributed by NM, 13-Aug-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 ·ℎ 𝐵)) = (𝐴 ·ℎ (𝑇‘𝐵))) | ||
| Theorem | lnopli 31938 | Basic scalar product property of a linear Hilbert space operator. (Contributed by NM, 23-Jan-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 𝐶)) = ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ (𝑇‘𝐶))) | ||
| Theorem | lnopfi 31939 | A linear Hilbert space operator is a Hilbert space operator. (Contributed by NM, 23-Jan-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp ⇒ ⊢ 𝑇: ℋ⟶ ℋ | ||
| Theorem | lnop0i 31940 | The value of a linear Hilbert space operator at zero is zero. Remark in [Beran] p. 99. (Contributed by NM, 11-May-2005.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp ⇒ ⊢ (𝑇‘0ℎ) = 0ℎ | ||
| Theorem | lnopaddi 31941 | Additive property of a linear Hilbert space operator. (Contributed by NM, 11-May-2005.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 +ℎ 𝐵)) = ((𝑇‘𝐴) +ℎ (𝑇‘𝐵))) | ||
| Theorem | lnopmuli 31942 | Multiplicative property of a linear Hilbert space operator. (Contributed by NM, 11-May-2005.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 ·ℎ 𝐵)) = (𝐴 ·ℎ (𝑇‘𝐵))) | ||
| Theorem | lnopaddmuli 31943 | Sum/product property of a linear Hilbert space operator. (Contributed by NM, 1-Jul-2005.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑇‘(𝐵 +ℎ (𝐴 ·ℎ 𝐶))) = ((𝑇‘𝐵) +ℎ (𝐴 ·ℎ (𝑇‘𝐶)))) | ||
| Theorem | lnopsubi 31944 | Subtraction property for a linear Hilbert space operator. (Contributed by NM, 1-Jul-2005.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 −ℎ 𝐵)) = ((𝑇‘𝐴) −ℎ (𝑇‘𝐵))) | ||
| Theorem | lnopsubmuli 31945 | Subtraction/product property of a linear Hilbert space operator. (Contributed by NM, 2-Jul-2005.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑇‘(𝐵 −ℎ (𝐴 ·ℎ 𝐶))) = ((𝑇‘𝐵) −ℎ (𝐴 ·ℎ (𝑇‘𝐶)))) | ||
| Theorem | lnopmulsubi 31946 | Product/subtraction property of a linear Hilbert space operator. (Contributed by NM, 2-Jul-2005.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑇‘((𝐴 ·ℎ 𝐵) −ℎ 𝐶)) = ((𝐴 ·ℎ (𝑇‘𝐵)) −ℎ (𝑇‘𝐶))) | ||
| Theorem | homco2 31947 | Move a scalar product out of a composition of operators. The operator 𝑇 must be linear, unlike homco1 31771 that works for any operators. (Contributed by NM, 13-Aug-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) → (𝑇 ∘ (𝐴 ·op 𝑈)) = (𝐴 ·op (𝑇 ∘ 𝑈))) | ||
| Theorem | idunop 31948 | The identity function (restricted to Hilbert space) is a unitary operator. (Contributed by NM, 21-Jan-2006.) (New usage is discouraged.) |
| ⊢ ( I ↾ ℋ) ∈ UniOp | ||
| Theorem | 0cnop 31949 | The identically zero function is a continuous Hilbert space operator. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
| ⊢ 0hop ∈ ContOp | ||
| Theorem | 0cnfn 31950 | The identically zero function is a continuous Hilbert space functional. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
| ⊢ ( ℋ × {0}) ∈ ContFn | ||
| Theorem | idcnop 31951 | The identity function (restricted to Hilbert space) is a continuous operator. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
| ⊢ ( I ↾ ℋ) ∈ ContOp | ||
| Theorem | idhmop 31952 | The Hilbert space identity operator is a Hermitian operator. (Contributed by NM, 22-Apr-2006.) (New usage is discouraged.) |
| ⊢ Iop ∈ HrmOp | ||
| Theorem | 0hmop 31953 | The identically zero function is a Hermitian operator. (Contributed by NM, 8-Aug-2006.) (New usage is discouraged.) |
| ⊢ 0hop ∈ HrmOp | ||
| Theorem | 0lnop 31954 | The identically zero function is a linear Hilbert space operator. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
| ⊢ 0hop ∈ LinOp | ||
| Theorem | 0lnfn 31955 | The identically zero function is a linear Hilbert space functional. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
| ⊢ ( ℋ × {0}) ∈ LinFn | ||
| Theorem | nmop0 31956 | The norm of the zero operator is zero. (Contributed by NM, 8-Feb-2006.) (New usage is discouraged.) |
| ⊢ (normop‘ 0hop ) = 0 | ||
| Theorem | nmfn0 31957 | The norm of the identically zero functional is zero. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.) |
| ⊢ (normfn‘( ℋ × {0})) = 0 | ||
| Theorem | hmopbdoptHIL 31958 | A Hermitian operator is a bounded linear operator (Hellinger-Toeplitz Theorem). (Contributed by NM, 18-Jan-2008.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ HrmOp → 𝑇 ∈ BndLinOp) | ||
| Theorem | hoddii 31959 | Distributive law for Hilbert space operator difference. (Interestingly, the reverse distributive law hocsubdiri 31750 does not require linearity.) (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.) |
| ⊢ 𝑅 ∈ LinOp & ⊢ 𝑆: ℋ⟶ ℋ & ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ (𝑅 ∘ (𝑆 −op 𝑇)) = ((𝑅 ∘ 𝑆) −op (𝑅 ∘ 𝑇)) | ||
| Theorem | hoddi 31960 | Distributive law for Hilbert space operator difference. (Interestingly, the reverse distributive law hocsubdiri 31750 does not require linearity.) (Contributed by NM, 23-Aug-2006.) (New usage is discouraged.) |
| ⊢ ((𝑅 ∈ LinOp ∧ 𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑅 ∘ (𝑆 −op 𝑇)) = ((𝑅 ∘ 𝑆) −op (𝑅 ∘ 𝑇))) | ||
| Theorem | nmop0h 31961 | The norm of any operator on the trivial Hilbert space is zero. (This is the reason we need ℋ ≠ 0ℋ in nmopun 31984.) (Contributed by NM, 24-Feb-2006.) (New usage is discouraged.) |
| ⊢ (( ℋ = 0ℋ ∧ 𝑇: ℋ⟶ ℋ) → (normop‘𝑇) = 0) | ||
| Theorem | idlnop 31962 | The identity function (restricted to Hilbert space) is a linear operator. (Contributed by NM, 24-Jan-2006.) (New usage is discouraged.) |
| ⊢ ( I ↾ ℋ) ∈ LinOp | ||
| Theorem | 0bdop 31963 | The identically zero operator is bounded. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
| ⊢ 0hop ∈ BndLinOp | ||
| Theorem | adj0 31964 | Adjoint of the zero operator. (Contributed by NM, 20-Feb-2006.) (New usage is discouraged.) |
| ⊢ (adjℎ‘ 0hop ) = 0hop | ||
| Theorem | nmlnop0iALT 31965 | A linear operator with a zero norm is identically zero. (Contributed by NM, 8-Feb-2006.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝑇 ∈ LinOp ⇒ ⊢ ((normop‘𝑇) = 0 ↔ 𝑇 = 0hop ) | ||
| Theorem | nmlnop0iHIL 31966 | A linear operator with a zero norm is identically zero. (Contributed by NM, 18-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp ⇒ ⊢ ((normop‘𝑇) = 0 ↔ 𝑇 = 0hop ) | ||
| Theorem | nmlnopgt0i 31967 | A linear Hilbert space operator that is not identically zero has a positive norm. (Contributed by NM, 9-Feb-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp ⇒ ⊢ (𝑇 ≠ 0hop ↔ 0 < (normop‘𝑇)) | ||
| Theorem | nmlnop0 31968 | A linear operator with a zero norm is identically zero. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ LinOp → ((normop‘𝑇) = 0 ↔ 𝑇 = 0hop )) | ||
| Theorem | nmlnopne0 31969 | A linear operator with a nonzero norm is nonzero. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ LinOp → ((normop‘𝑇) ≠ 0 ↔ 𝑇 ≠ 0hop )) | ||
| Theorem | lnopmi 31970 | The scalar product of a linear operator is a linear operator. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp ⇒ ⊢ (𝐴 ∈ ℂ → (𝐴 ·op 𝑇) ∈ LinOp) | ||
| Theorem | lnophsi 31971 | The sum of two linear operators is linear. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
| ⊢ 𝑆 ∈ LinOp & ⊢ 𝑇 ∈ LinOp ⇒ ⊢ (𝑆 +op 𝑇) ∈ LinOp | ||
| Theorem | lnophdi 31972 | The difference of two linear operators is linear. (Contributed by NM, 27-Jul-2006.) (New usage is discouraged.) |
| ⊢ 𝑆 ∈ LinOp & ⊢ 𝑇 ∈ LinOp ⇒ ⊢ (𝑆 −op 𝑇) ∈ LinOp | ||
| Theorem | lnopcoi 31973 | The composition of two linear operators is linear. (Contributed by NM, 8-Mar-2006.) (New usage is discouraged.) |
| ⊢ 𝑆 ∈ LinOp & ⊢ 𝑇 ∈ LinOp ⇒ ⊢ (𝑆 ∘ 𝑇) ∈ LinOp | ||
| Theorem | lnopco0i 31974 | The composition of a linear operator with one whose norm is zero. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
| ⊢ 𝑆 ∈ LinOp & ⊢ 𝑇 ∈ LinOp ⇒ ⊢ ((normop‘𝑇) = 0 → (normop‘(𝑆 ∘ 𝑇)) = 0) | ||
| Theorem | lnopeq0lem1 31975 | Lemma for lnopeq0i 31977. Apply the generalized polarization identity polid2i 31127 to the quadratic form ((𝑇‘𝑥), 𝑥). (Contributed by NM, 26-Jul-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp & ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ ((𝑇‘𝐴) ·ih 𝐵) = (((((𝑇‘(𝐴 +ℎ 𝐵)) ·ih (𝐴 +ℎ 𝐵)) − ((𝑇‘(𝐴 −ℎ 𝐵)) ·ih (𝐴 −ℎ 𝐵))) + (i · (((𝑇‘(𝐴 +ℎ (i ·ℎ 𝐵))) ·ih (𝐴 +ℎ (i ·ℎ 𝐵))) − ((𝑇‘(𝐴 −ℎ (i ·ℎ 𝐵))) ·ih (𝐴 −ℎ (i ·ℎ 𝐵)))))) / 4) | ||
| Theorem | lnopeq0lem2 31976 | Lemma for lnopeq0i 31977. (Contributed by NM, 26-Jul-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇‘𝐴) ·ih 𝐵) = (((((𝑇‘(𝐴 +ℎ 𝐵)) ·ih (𝐴 +ℎ 𝐵)) − ((𝑇‘(𝐴 −ℎ 𝐵)) ·ih (𝐴 −ℎ 𝐵))) + (i · (((𝑇‘(𝐴 +ℎ (i ·ℎ 𝐵))) ·ih (𝐴 +ℎ (i ·ℎ 𝐵))) − ((𝑇‘(𝐴 −ℎ (i ·ℎ 𝐵))) ·ih (𝐴 −ℎ (i ·ℎ 𝐵)))))) / 4)) | ||
| Theorem | lnopeq0i 31977* | A condition implying that a linear Hilbert space operator is identically zero. Unlike ho01i 31798 for arbitrary operators, when the operator is linear we need to consider only the values of the quadratic form (𝑇‘𝑥) ·ih 𝑥). (Contributed by NM, 26-Jul-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp ⇒ ⊢ (∀𝑥 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑥) = 0 ↔ 𝑇 = 0hop ) | ||
| Theorem | lnopeqi 31978* | Two linear Hilbert space operators are equal iff their quadratic forms are equal. (Contributed by NM, 27-Jul-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp & ⊢ 𝑈 ∈ LinOp ⇒ ⊢ (∀𝑥 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑥) = ((𝑈‘𝑥) ·ih 𝑥) ↔ 𝑇 = 𝑈) | ||
| Theorem | lnopeq 31979* | Two linear Hilbert space operators are equal iff their quadratic forms are equal. (Contributed by NM, 27-Jul-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ LinOp ∧ 𝑈 ∈ LinOp) → (∀𝑥 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑥) = ((𝑈‘𝑥) ·ih 𝑥) ↔ 𝑇 = 𝑈)) | ||
| Theorem | lnopunilem1 31980* | Lemma for lnopunii 31982. (Contributed by NM, 14-May-2005.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp & ⊢ ∀𝑥 ∈ ℋ (normℎ‘(𝑇‘𝑥)) = (normℎ‘𝑥) & ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ (ℜ‘(𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) = (ℜ‘(𝐶 · (𝐴 ·ih 𝐵))) | ||
| Theorem | lnopunilem2 31981* | Lemma for lnopunii 31982. (Contributed by NM, 12-May-2005.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp & ⊢ ∀𝑥 ∈ ℋ (normℎ‘(𝑇‘𝑥)) = (normℎ‘𝑥) & ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ ((𝑇‘𝐴) ·ih (𝑇‘𝐵)) = (𝐴 ·ih 𝐵) | ||
| Theorem | lnopunii 31982* | If a linear operator (whose range is ℋ) is idempotent in the norm, the operator is unitary. Similar to theorem in [AkhiezerGlazman] p. 73. (Contributed by NM, 23-Jan-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp & ⊢ 𝑇: ℋ–onto→ ℋ & ⊢ ∀𝑥 ∈ ℋ (normℎ‘(𝑇‘𝑥)) = (normℎ‘𝑥) ⇒ ⊢ 𝑇 ∈ UniOp | ||
| Theorem | elunop2 31983* | An operator is unitary iff it is linear, onto, and idempotent in the norm. Similar to theorem in [AkhiezerGlazman] p. 73, and its converse. (Contributed by NM, 24-Feb-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ UniOp ↔ (𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (normℎ‘(𝑇‘𝑥)) = (normℎ‘𝑥))) | ||
| Theorem | nmopun 31984 | Norm of a unitary Hilbert space operator. (Contributed by NM, 25-Feb-2006.) (New usage is discouraged.) |
| ⊢ (( ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp) → (normop‘𝑇) = 1) | ||
| Theorem | unopbd 31985 | A unitary operator is a bounded linear operator. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ UniOp → 𝑇 ∈ BndLinOp) | ||
| Theorem | lnophmlem1 31986* | Lemma for lnophmi 31988. (Contributed by NM, 24-Jan-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝑇 ∈ LinOp & ⊢ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇‘𝑥)) ∈ ℝ ⇒ ⊢ (𝐴 ·ih (𝑇‘𝐴)) ∈ ℝ | ||
| Theorem | lnophmlem2 31987* | Lemma for lnophmi 31988. (Contributed by NM, 24-Jan-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝑇 ∈ LinOp & ⊢ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇‘𝑥)) ∈ ℝ ⇒ ⊢ (𝐴 ·ih (𝑇‘𝐵)) = ((𝑇‘𝐴) ·ih 𝐵) | ||
| Theorem | lnophmi 31988* | A linear operator is Hermitian if 𝑥 ·ih (𝑇‘𝑥) takes only real values. Remark in [ReedSimon] p. 195. (Contributed by NM, 24-Jan-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp & ⊢ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇‘𝑥)) ∈ ℝ ⇒ ⊢ 𝑇 ∈ HrmOp | ||
| Theorem | lnophm 31989* | A linear operator is Hermitian if 𝑥 ·ih (𝑇‘𝑥) takes only real values. Remark in [ReedSimon] p. 195. (Contributed by NM, 24-Jan-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇‘𝑥)) ∈ ℝ) → 𝑇 ∈ HrmOp) | ||
| Theorem | hmops 31990 | The sum of two Hermitian operators is Hermitian. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (𝑇 +op 𝑈) ∈ HrmOp) | ||
| Theorem | hmopm 31991 | The scalar product of a Hermitian operator with a real is Hermitian. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) → (𝐴 ·op 𝑇) ∈ HrmOp) | ||
| Theorem | hmopd 31992 | The difference of two Hermitian operators is Hermitian. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (𝑇 −op 𝑈) ∈ HrmOp) | ||
| Theorem | hmopco 31993 | The composition of two commuting Hermitian operators is Hermitian. (Contributed by NM, 22-Aug-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ∧ (𝑇 ∘ 𝑈) = (𝑈 ∘ 𝑇)) → (𝑇 ∘ 𝑈) ∈ HrmOp) | ||
| Theorem | nmbdoplbi 31994 | A lower bound for the norm of a bounded linear operator. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ BndLinOp ⇒ ⊢ (𝐴 ∈ ℋ → (normℎ‘(𝑇‘𝐴)) ≤ ((normop‘𝑇) · (normℎ‘𝐴))) | ||
| Theorem | nmbdoplb 31995 | A lower bound for the norm of a bounded linear Hilbert space operator. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ BndLinOp ∧ 𝐴 ∈ ℋ) → (normℎ‘(𝑇‘𝐴)) ≤ ((normop‘𝑇) · (normℎ‘𝐴))) | ||
| Theorem | nmcexi 31996* | Lemma for nmcopexi 31997 and nmcfnexi 32021. The norm of a continuous linear Hilbert space operator or functional exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by Mario Carneiro, 17-Nov-2013.) (Proof shortened by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℋ ((normℎ‘𝑧) < 𝑦 → (𝑁‘(𝑇‘𝑧)) < 1) & ⊢ (𝑆‘𝑇) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((normℎ‘𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇‘𝑥)))}, ℝ*, < ) & ⊢ (𝑥 ∈ ℋ → (𝑁‘(𝑇‘𝑥)) ∈ ℝ) & ⊢ (𝑁‘(𝑇‘0ℎ)) = 0 & ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → ((𝑦 / 2) · (𝑁‘(𝑇‘𝑥))) = (𝑁‘(𝑇‘((𝑦 / 2) ·ℎ 𝑥)))) ⇒ ⊢ (𝑆‘𝑇) ∈ ℝ | ||
| Theorem | nmcopexi 31997 | The norm of a continuous linear Hilbert space operator exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by NM, 5-Feb-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp & ⊢ 𝑇 ∈ ContOp ⇒ ⊢ (normop‘𝑇) ∈ ℝ | ||
| Theorem | nmcoplbi 31998 | A lower bound for the norm of a continuous linear operator. Theorem 3.5(ii) of [Beran] p. 99. (Contributed by NM, 7-Feb-2006.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp & ⊢ 𝑇 ∈ ContOp ⇒ ⊢ (𝐴 ∈ ℋ → (normℎ‘(𝑇‘𝐴)) ≤ ((normop‘𝑇) · (normℎ‘𝐴))) | ||
| Theorem | nmcopex 31999 | The norm of a continuous linear Hilbert space operator exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp) → (normop‘𝑇) ∈ ℝ) | ||
| Theorem | nmcoplb 32000 | A lower bound for the norm of a continuous linear Hilbert space operator. Theorem 3.5(ii) of [Beran] p. 99. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp ∧ 𝐴 ∈ ℋ) → (normℎ‘(𝑇‘𝐴)) ≤ ((normop‘𝑇) · (normℎ‘𝐴))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |