| Metamath
Proof Explorer Theorem List (p. 320 of 494) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30937) |
(30938-32460) |
(32461-49324) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | elcnfn 31901* | Property defining a continuous functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ ContFn ↔ (𝑇: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑇‘𝑤) − (𝑇‘𝑥))) < 𝑦))) | ||
| Theorem | ellnfn 31902* | Property defining a linear functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ LinFn ↔ (𝑇: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (𝑇‘𝑦)) + (𝑇‘𝑧)))) | ||
| Theorem | lnfnf 31903 | A linear Hilbert space functional is a functional. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ LinFn → 𝑇: ℋ⟶ℂ) | ||
| Theorem | dfadj2 31904* | Alternate definition of the adjoint of a Hilbert space operator. (Contributed by NM, 20-Feb-2006.) (New usage is discouraged.) |
| ⊢ adjℎ = {〈𝑡, 𝑢〉 ∣ (𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦))} | ||
| Theorem | funadj 31905 | Functionality of the adjoint function. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
| ⊢ Fun adjℎ | ||
| Theorem | dmadjss 31906 | The domain of the adjoint function is a subset of the maps from ℋ to ℋ. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
| ⊢ dom adjℎ ⊆ ( ℋ ↑m ℋ) | ||
| Theorem | dmadjop 31907 | A member of the domain of the adjoint function is a Hilbert space operator. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ dom adjℎ → 𝑇: ℋ⟶ ℋ) | ||
| Theorem | adjeu 31908* | Elementhood in the domain of the adjoint function. (Contributed by Mario Carneiro, 11-Sep-2015.) (Revised by Mario Carneiro, 24-Dec-2016.) (New usage is discouraged.) |
| ⊢ (𝑇: ℋ⟶ ℋ → (𝑇 ∈ dom adjℎ ↔ ∃!𝑢 ∈ ( ℋ ↑m ℋ)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦))) | ||
| Theorem | adjval 31909* | Value of the adjoint function for 𝑇 in the domain of adjℎ. (Contributed by NM, 19-Feb-2006.) (Revised by Mario Carneiro, 24-Dec-2016.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ dom adjℎ → (adjℎ‘𝑇) = (℩𝑢 ∈ ( ℋ ↑m ℋ)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦))) | ||
| Theorem | adjval2 31910* | Value of the adjoint function. (Contributed by NM, 19-Feb-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ dom adjℎ → (adjℎ‘𝑇) = (℩𝑢 ∈ ( ℋ ↑m ℋ)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑢‘𝑦)))) | ||
| Theorem | cnvadj 31911 | The adjoint function equals its converse. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
| ⊢ ◡adjℎ = adjℎ | ||
| Theorem | funcnvadj 31912 | The converse of the adjoint function is a function. (Contributed by NM, 25-Jan-2006.) (New usage is discouraged.) |
| ⊢ Fun ◡adjℎ | ||
| Theorem | adj1o 31913 | The adjoint function maps one-to-one onto its domain. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
| ⊢ adjℎ:dom adjℎ–1-1-onto→dom adjℎ | ||
| Theorem | dmadjrn 31914 | The adjoint of an operator belongs to the adjoint function's domain. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ dom adjℎ → (adjℎ‘𝑇) ∈ dom adjℎ) | ||
| Theorem | eigvecval 31915* | The set of eigenvectors of a Hilbert space operator. (Contributed by NM, 11-Mar-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ (𝑇: ℋ⟶ ℋ → (eigvec‘𝑇) = {𝑥 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑦 ∈ ℂ (𝑇‘𝑥) = (𝑦 ·ℎ 𝑥)}) | ||
| Theorem | eigvalfval 31916* | The eigenvalues of eigenvectors of a Hilbert space operator. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.) |
| ⊢ (𝑇: ℋ⟶ ℋ → (eigval‘𝑇) = (𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2)))) | ||
| Theorem | specval 31917* | The value of the spectrum of an operator. (Contributed by NM, 11-Apr-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ (𝑇: ℋ⟶ ℋ → (Lambda‘𝑇) = {𝑥 ∈ ℂ ∣ ¬ (𝑇 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ}) | ||
| Theorem | speccl 31918 | The spectrum of an operator is a set of complex numbers. (Contributed by NM, 11-Apr-2006.) (New usage is discouraged.) |
| ⊢ (𝑇: ℋ⟶ ℋ → (Lambda‘𝑇) ⊆ ℂ) | ||
| Theorem | hhlnoi 31919 | The linear operators of Hilbert space. (Contributed by NM, 19-Nov-2007.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝐿 = (𝑈 LnOp 𝑈) ⇒ ⊢ LinOp = 𝐿 | ||
| Theorem | hhnmoi 31920 | The norm of an operator in Hilbert space. (Contributed by NM, 19-Nov-2007.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑁 = (𝑈 normOpOLD 𝑈) ⇒ ⊢ normop = 𝑁 | ||
| Theorem | hhbloi 31921 | A bounded linear operator in Hilbert space. (Contributed by NM, 19-Nov-2007.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝐵 = (𝑈 BLnOp 𝑈) ⇒ ⊢ BndLinOp = 𝐵 | ||
| Theorem | hh0oi 31922 | The zero operator in Hilbert space. (Contributed by NM, 7-Dec-2007.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑍 = (𝑈 0op 𝑈) ⇒ ⊢ 0hop = 𝑍 | ||
| Theorem | hhcno 31923 | The continuous operators of Hilbert space. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
| ⊢ 𝐷 = (normℎ ∘ −ℎ ) & ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ContOp = (𝐽 Cn 𝐽) | ||
| Theorem | hhcnf 31924 | The continuous functionals of Hilbert space. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
| ⊢ 𝐷 = (normℎ ∘ −ℎ ) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐾 = (TopOpen‘ℂfld) ⇒ ⊢ ContFn = (𝐽 Cn 𝐾) | ||
| Theorem | dmadjrnb 31925 | The adjoint of an operator belongs to the adjoint function's domain. (Note: the converse is dependent on our definition of function value, since it uses ndmfv 6941.) (Contributed by NM, 19-Feb-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ dom adjℎ ↔ (adjℎ‘𝑇) ∈ dom adjℎ) | ||
| Theorem | nmoplb 31926 | A lower bound for an operator norm. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (normℎ‘(𝑇‘𝐴)) ≤ (normop‘𝑇)) | ||
| Theorem | nmopub 31927* | An upper bound for an operator norm. (Contributed by NM, 7-Mar-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℝ*) → ((normop‘𝑇) ≤ 𝐴 ↔ ∀𝑥 ∈ ℋ ((normℎ‘𝑥) ≤ 1 → (normℎ‘(𝑇‘𝑥)) ≤ 𝐴))) | ||
| Theorem | nmopub2tALT 31928* | An upper bound for an operator norm. (Contributed by NM, 12-Apr-2006.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ ((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥 ∈ ℋ (normℎ‘(𝑇‘𝑥)) ≤ (𝐴 · (normℎ‘𝑥))) → (normop‘𝑇) ≤ 𝐴) | ||
| Theorem | nmopub2tHIL 31929* | An upper bound for an operator norm. (Contributed by NM, 13-Dec-2007.) (New usage is discouraged.) |
| ⊢ ((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥 ∈ ℋ (normℎ‘(𝑇‘𝑥)) ≤ (𝐴 · (normℎ‘𝑥))) → (normop‘𝑇) ≤ 𝐴) | ||
| Theorem | nmopge0 31930 | The norm of any Hilbert space operator is nonnegative. (Contributed by NM, 9-Feb-2006.) (New usage is discouraged.) |
| ⊢ (𝑇: ℋ⟶ ℋ → 0 ≤ (normop‘𝑇)) | ||
| Theorem | nmopgt0 31931 | A linear Hilbert space operator that is not identically zero has a positive norm. (Contributed by NM, 9-Feb-2006.) (New usage is discouraged.) |
| ⊢ (𝑇: ℋ⟶ ℋ → ((normop‘𝑇) ≠ 0 ↔ 0 < (normop‘𝑇))) | ||
| Theorem | cnopc 31932* | Basic continuity property of a continuous Hilbert space operator. (Contributed by NM, 2-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ ContOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ ℝ+ ∀𝑦 ∈ ℋ ((normℎ‘(𝑦 −ℎ 𝐴)) < 𝑥 → (normℎ‘((𝑇‘𝑦) −ℎ (𝑇‘𝐴))) < 𝐵)) | ||
| Theorem | lnopl 31933 | Basic linearity property of a linear Hilbert space operator. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.) |
| ⊢ (((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ) ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)) → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 𝐶)) = ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ (𝑇‘𝐶))) | ||
| Theorem | unop 31934 | Basic inner product property of a unitary operator. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇‘𝐴) ·ih (𝑇‘𝐵)) = (𝐴 ·ih 𝐵)) | ||
| Theorem | unopf1o 31935 | A unitary operator in Hilbert space is one-to-one and onto. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ UniOp → 𝑇: ℋ–1-1-onto→ ℋ) | ||
| Theorem | unopnorm 31936 | A unitary operator is idempotent in the norm. (Contributed by NM, 25-Feb-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ) → (normℎ‘(𝑇‘𝐴)) = (normℎ‘𝐴)) | ||
| Theorem | cnvunop 31937 | The inverse (converse) of a unitary operator in Hilbert space is unitary. Theorem in [AkhiezerGlazman] p. 72. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ UniOp → ◡𝑇 ∈ UniOp) | ||
| Theorem | unopadj 31938 | The inverse (converse) of a unitary operator is its adjoint. Equation 2 of [AkhiezerGlazman] p. 72. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇‘𝐴) ·ih 𝐵) = (𝐴 ·ih (◡𝑇‘𝐵))) | ||
| Theorem | unoplin 31939 | A unitary operator is linear. Theorem in [AkhiezerGlazman] p. 72. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ UniOp → 𝑇 ∈ LinOp) | ||
| Theorem | counop 31940 | The composition of two unitary operators is unitary. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.) |
| ⊢ ((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) → (𝑆 ∘ 𝑇) ∈ UniOp) | ||
| Theorem | hmop 31941 | Basic inner product property of a Hermitian operator. (Contributed by NM, 19-Mar-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih (𝑇‘𝐵)) = ((𝑇‘𝐴) ·ih 𝐵)) | ||
| Theorem | hmopre 31942 | The inner product of the value and argument of a Hermitian operator is real. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ) → ((𝑇‘𝐴) ·ih 𝐴) ∈ ℝ) | ||
| Theorem | nmfnlb 31943 | A lower bound for a functional norm. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (abs‘(𝑇‘𝐴)) ≤ (normfn‘𝑇)) | ||
| Theorem | nmfnleub 31944* | An upper bound for the norm of a functional. (Contributed by NM, 24-May-2006.) (Revised by Mario Carneiro, 7-Sep-2014.) (New usage is discouraged.) |
| ⊢ ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℝ*) → ((normfn‘𝑇) ≤ 𝐴 ↔ ∀𝑥 ∈ ℋ ((normℎ‘𝑥) ≤ 1 → (abs‘(𝑇‘𝑥)) ≤ 𝐴))) | ||
| Theorem | nmfnleub2 31945* | An upper bound for the norm of a functional. (Contributed by NM, 24-May-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥 ∈ ℋ (abs‘(𝑇‘𝑥)) ≤ (𝐴 · (normℎ‘𝑥))) → (normfn‘𝑇) ≤ 𝐴) | ||
| Theorem | nmfnge0 31946 | The norm of any Hilbert space functional is nonnegative. (Contributed by NM, 24-May-2006.) (New usage is discouraged.) |
| ⊢ (𝑇: ℋ⟶ℂ → 0 ≤ (normfn‘𝑇)) | ||
| Theorem | elnlfn 31947 | Membership in the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
| ⊢ (𝑇: ℋ⟶ℂ → (𝐴 ∈ (null‘𝑇) ↔ (𝐴 ∈ ℋ ∧ (𝑇‘𝐴) = 0))) | ||
| Theorem | elnlfn2 31948 | Membership in the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
| ⊢ ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ (null‘𝑇)) → (𝑇‘𝐴) = 0) | ||
| Theorem | cnfnc 31949* | Basic continuity property of a continuous functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ ContFn ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ ℝ+ ∀𝑦 ∈ ℋ ((normℎ‘(𝑦 −ℎ 𝐴)) < 𝑥 → (abs‘((𝑇‘𝑦) − (𝑇‘𝐴))) < 𝐵)) | ||
| Theorem | lnfnl 31950 | Basic linearity property of a linear functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
| ⊢ (((𝑇 ∈ LinFn ∧ 𝐴 ∈ ℂ) ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)) → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 𝐶)) = ((𝐴 · (𝑇‘𝐵)) + (𝑇‘𝐶))) | ||
| Theorem | adjcl 31951 | Closure of the adjoint of a Hilbert space operator. (Contributed by NM, 17-Jun-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) → ((adjℎ‘𝑇)‘𝐴) ∈ ℋ) | ||
| Theorem | adj1 31952 | Property of an adjoint Hilbert space operator. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih (𝑇‘𝐵)) = (((adjℎ‘𝑇)‘𝐴) ·ih 𝐵)) | ||
| Theorem | adj2 31953 | Property of an adjoint Hilbert space operator. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇‘𝐴) ·ih 𝐵) = (𝐴 ·ih ((adjℎ‘𝑇)‘𝐵))) | ||
| Theorem | adjeq 31954* | A property that determines the adjoint of a Hilbert space operator. (Contributed by NM, 20-Feb-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆‘𝑦))) → (adjℎ‘𝑇) = 𝑆) | ||
| Theorem | adjadj 31955 | Double adjoint. Theorem 3.11(iv) of [Beran] p. 106. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ dom adjℎ → (adjℎ‘(adjℎ‘𝑇)) = 𝑇) | ||
| Theorem | adjvalval 31956* | Value of the value of the adjoint function. (Contributed by NM, 22-Feb-2006.) (Proof shortened by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) → ((adjℎ‘𝑇)‘𝐴) = (℩𝑤 ∈ ℋ ∀𝑥 ∈ ℋ ((𝑇‘𝑥) ·ih 𝐴) = (𝑥 ·ih 𝑤))) | ||
| Theorem | unopadj2 31957 | The adjoint of a unitary operator is its inverse (converse). Equation 2 of [AkhiezerGlazman] p. 72. (Contributed by NM, 23-Feb-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ UniOp → (adjℎ‘𝑇) = ◡𝑇) | ||
| Theorem | hmopadj 31958 | A Hermitian operator is self-adjoint. (Contributed by NM, 24-Mar-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ HrmOp → (adjℎ‘𝑇) = 𝑇) | ||
| Theorem | hmdmadj 31959 | Every Hermitian operator has an adjoint. (Contributed by NM, 24-Mar-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ HrmOp → 𝑇 ∈ dom adjℎ) | ||
| Theorem | hmopadj2 31960 | An operator is Hermitian iff it is self-adjoint. Definition of Hermitian in [Halmos] p. 41. (Contributed by NM, 9-Apr-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ dom adjℎ → (𝑇 ∈ HrmOp ↔ (adjℎ‘𝑇) = 𝑇)) | ||
| Theorem | hmoplin 31961 | A Hermitian operator is linear. (Contributed by NM, 24-Mar-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ HrmOp → 𝑇 ∈ LinOp) | ||
| Theorem | brafval 31962* | The bra of a vector, expressed as 〈𝐴 ∣ in Dirac notation. See df-bra 31869. (Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℋ → (bra‘𝐴) = (𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐴))) | ||
| Theorem | braval 31963 | A bra-ket juxtaposition, expressed as 〈𝐴 ∣ 𝐵〉 in Dirac notation, equals the inner product of the vectors. Based on definition of bra in [Prugovecki] p. 186. (Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((bra‘𝐴)‘𝐵) = (𝐵 ·ih 𝐴)) | ||
| Theorem | braadd 31964 | Linearity property of bra for addition. (Contributed by NM, 23-May-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((bra‘𝐴)‘(𝐵 +ℎ 𝐶)) = (((bra‘𝐴)‘𝐵) + ((bra‘𝐴)‘𝐶))) | ||
| Theorem | bramul 31965 | Linearity property of bra for multiplication. (Contributed by NM, 23-May-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((bra‘𝐴)‘(𝐵 ·ℎ 𝐶)) = (𝐵 · ((bra‘𝐴)‘𝐶))) | ||
| Theorem | brafn 31966 | The bra function is a functional. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℋ → (bra‘𝐴): ℋ⟶ℂ) | ||
| Theorem | bralnfn 31967 | The Dirac bra function is a linear functional. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ ℋ → (bra‘𝐴) ∈ LinFn) | ||
| Theorem | bracl 31968 | Closure of the bra function. (Contributed by NM, 23-May-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((bra‘𝐴)‘𝐵) ∈ ℂ) | ||
| Theorem | bra0 31969 | The Dirac bra of the zero vector. (Contributed by NM, 25-May-2006.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.) |
| ⊢ (bra‘0ℎ) = ( ℋ × {0}) | ||
| Theorem | brafnmul 31970 | Anti-linearity property of bra functional for multiplication. (Contributed by NM, 31-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (bra‘(𝐴 ·ℎ 𝐵)) = ((∗‘𝐴) ·fn (bra‘𝐵))) | ||
| Theorem | kbfval 31971* | The outer product of two vectors, expressed as ∣ 𝐴〉〈𝐵 ∣ in Dirac notation. See df-kb 31870. (Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ketbra 𝐵) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) ·ℎ 𝐴))) | ||
| Theorem | kbop 31972 | The outer product of two vectors, expressed as ∣ 𝐴〉〈𝐵 ∣ in Dirac notation, is an operator. (Contributed by NM, 30-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ketbra 𝐵): ℋ⟶ ℋ) | ||
| Theorem | kbval 31973 | The value of the operator resulting from the outer product ∣ 𝐴〉 〈𝐵 ∣ of two vectors. Equation 8.1 of [Prugovecki] p. 376. (Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘𝐶) = ((𝐶 ·ih 𝐵) ·ℎ 𝐴)) | ||
| Theorem | kbmul 31974 | Multiplication property of outer product. (Contributed by NM, 31-May-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) ketbra 𝐶) = (𝐵 ketbra ((∗‘𝐴) ·ℎ 𝐶))) | ||
| Theorem | kbpj 31975 | If a vector 𝐴 has norm 1, the outer product ∣ 𝐴〉〈𝐴 ∣ is the projector onto the subspace spanned by 𝐴. http://en.wikipedia.org/wiki/Bra-ket#Linear%5Foperators. (Contributed by NM, 30-May-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ (normℎ‘𝐴) = 1) → (𝐴 ketbra 𝐴) = (projℎ‘(span‘{𝐴}))) | ||
| Theorem | eleigvec 31976* | Membership in the set of eigenvectors of a Hilbert space operator. (Contributed by NM, 11-Mar-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ (𝑇: ℋ⟶ ℋ → (𝐴 ∈ (eigvec‘𝑇) ↔ (𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ∧ ∃𝑥 ∈ ℂ (𝑇‘𝐴) = (𝑥 ·ℎ 𝐴)))) | ||
| Theorem | eleigvec2 31977 | Membership in the set of eigenvectors of a Hilbert space operator. (Contributed by NM, 18-Mar-2006.) (New usage is discouraged.) |
| ⊢ (𝑇: ℋ⟶ ℋ → (𝐴 ∈ (eigvec‘𝑇) ↔ (𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ∧ (𝑇‘𝐴) ∈ (span‘{𝐴})))) | ||
| Theorem | eleigveccl 31978 | Closure of an eigenvector of a Hilbert space operator. (Contributed by NM, 23-Mar-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ (eigvec‘𝑇)) → 𝐴 ∈ ℋ) | ||
| Theorem | eigvalval 31979 | The eigenvalue of an eigenvector of a Hilbert space operator. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ (eigvec‘𝑇)) → ((eigval‘𝑇)‘𝐴) = (((𝑇‘𝐴) ·ih 𝐴) / ((normℎ‘𝐴)↑2))) | ||
| Theorem | eigvalcl 31980 | An eigenvalue is a complex number. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ (eigvec‘𝑇)) → ((eigval‘𝑇)‘𝐴) ∈ ℂ) | ||
| Theorem | eigvec1 31981 | Property of an eigenvector. (Contributed by NM, 12-Mar-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ (eigvec‘𝑇)) → ((𝑇‘𝐴) = (((eigval‘𝑇)‘𝐴) ·ℎ 𝐴) ∧ 𝐴 ≠ 0ℎ)) | ||
| Theorem | eighmre 31982 | The eigenvalues of a Hermitian operator are real. Equation 1.30 of [Hughes] p. 49. (Contributed by NM, 19-Mar-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) → ((eigval‘𝑇)‘𝐴) ∈ ℝ) | ||
| Theorem | eighmorth 31983 | Eigenvectors of a Hermitian operator with distinct eigenvalues are orthogonal. Equation 1.31 of [Hughes] p. 49. (Contributed by NM, 23-Mar-2006.) (New usage is discouraged.) |
| ⊢ (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ (𝐵 ∈ (eigvec‘𝑇) ∧ ((eigval‘𝑇)‘𝐴) ≠ ((eigval‘𝑇)‘𝐵))) → (𝐴 ·ih 𝐵) = 0) | ||
| Theorem | nmopnegi 31984 | Value of the norm of the negative of a Hilbert space operator. Unlike nmophmi 32050, the operator does not have to be bounded. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
| ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ (normop‘(-1 ·op 𝑇)) = (normop‘𝑇) | ||
| Theorem | lnop0 31985 | The value of a linear Hilbert space operator at zero is zero. Remark in [Beran] p. 99. (Contributed by NM, 13-Aug-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ LinOp → (𝑇‘0ℎ) = 0ℎ) | ||
| Theorem | lnopmul 31986 | Multiplicative property of a linear Hilbert space operator. (Contributed by NM, 13-Aug-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 ·ℎ 𝐵)) = (𝐴 ·ℎ (𝑇‘𝐵))) | ||
| Theorem | lnopli 31987 | Basic scalar product property of a linear Hilbert space operator. (Contributed by NM, 23-Jan-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 𝐶)) = ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ (𝑇‘𝐶))) | ||
| Theorem | lnopfi 31988 | A linear Hilbert space operator is a Hilbert space operator. (Contributed by NM, 23-Jan-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp ⇒ ⊢ 𝑇: ℋ⟶ ℋ | ||
| Theorem | lnop0i 31989 | The value of a linear Hilbert space operator at zero is zero. Remark in [Beran] p. 99. (Contributed by NM, 11-May-2005.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp ⇒ ⊢ (𝑇‘0ℎ) = 0ℎ | ||
| Theorem | lnopaddi 31990 | Additive property of a linear Hilbert space operator. (Contributed by NM, 11-May-2005.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 +ℎ 𝐵)) = ((𝑇‘𝐴) +ℎ (𝑇‘𝐵))) | ||
| Theorem | lnopmuli 31991 | Multiplicative property of a linear Hilbert space operator. (Contributed by NM, 11-May-2005.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 ·ℎ 𝐵)) = (𝐴 ·ℎ (𝑇‘𝐵))) | ||
| Theorem | lnopaddmuli 31992 | Sum/product property of a linear Hilbert space operator. (Contributed by NM, 1-Jul-2005.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑇‘(𝐵 +ℎ (𝐴 ·ℎ 𝐶))) = ((𝑇‘𝐵) +ℎ (𝐴 ·ℎ (𝑇‘𝐶)))) | ||
| Theorem | lnopsubi 31993 | Subtraction property for a linear Hilbert space operator. (Contributed by NM, 1-Jul-2005.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 −ℎ 𝐵)) = ((𝑇‘𝐴) −ℎ (𝑇‘𝐵))) | ||
| Theorem | lnopsubmuli 31994 | Subtraction/product property of a linear Hilbert space operator. (Contributed by NM, 2-Jul-2005.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑇‘(𝐵 −ℎ (𝐴 ·ℎ 𝐶))) = ((𝑇‘𝐵) −ℎ (𝐴 ·ℎ (𝑇‘𝐶)))) | ||
| Theorem | lnopmulsubi 31995 | Product/subtraction property of a linear Hilbert space operator. (Contributed by NM, 2-Jul-2005.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑇‘((𝐴 ·ℎ 𝐵) −ℎ 𝐶)) = ((𝐴 ·ℎ (𝑇‘𝐵)) −ℎ (𝑇‘𝐶))) | ||
| Theorem | homco2 31996 | Move a scalar product out of a composition of operators. The operator 𝑇 must be linear, unlike homco1 31820 that works for any operators. (Contributed by NM, 13-Aug-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) → (𝑇 ∘ (𝐴 ·op 𝑈)) = (𝐴 ·op (𝑇 ∘ 𝑈))) | ||
| Theorem | idunop 31997 | The identity function (restricted to Hilbert space) is a unitary operator. (Contributed by NM, 21-Jan-2006.) (New usage is discouraged.) |
| ⊢ ( I ↾ ℋ) ∈ UniOp | ||
| Theorem | 0cnop 31998 | The identically zero function is a continuous Hilbert space operator. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
| ⊢ 0hop ∈ ContOp | ||
| Theorem | 0cnfn 31999 | The identically zero function is a continuous Hilbert space functional. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
| ⊢ ( ℋ × {0}) ∈ ContFn | ||
| Theorem | idcnop 32000 | The identity function (restricted to Hilbert space) is a continuous operator. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
| ⊢ ( I ↾ ℋ) ∈ ContOp | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |