![]() |
Metamath
Proof Explorer Theorem List (p. 320 of 480) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30439) |
![]() (30440-31962) |
![]() (31963-47940) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | atcv1 31901 | Two atoms covering the zero subspace are equal. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝐴 ⋖ℋ (𝐵 ∨ℋ 𝐶)) → (𝐴 = 0ℋ ↔ 𝐵 = 𝐶)) | ||
Theorem | atexch 31902 | The Hilbert lattice satisfies the atom exchange property. Proposition 1(i) of [Kalmbach] p. 140. A version of this theorem related to vector analysis was originally proved by Hermann Grassmann in 1862. Also Definition 3.4-3(b) in [MegPav2000] p. 2345 (PDF p. 8) (use atnemeq0 31898 to obtain atom inequality). (Contributed by NM, 27-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝐵 ⊆ (𝐴 ∨ℋ 𝐶) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → 𝐶 ⊆ (𝐴 ∨ℋ 𝐵))) | ||
Theorem | atomli 31903 | An assertion holding in atomic orthomodular lattices that is equivalent to the exchange axiom. Proposition 3.2.17 of [PtakPulmannova] p. 66. (Contributed by NM, 24-Jun-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (𝐵 ∈ HAtoms → ((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) ∈ (HAtoms ∪ {0ℋ})) | ||
Theorem | atoml2i 31904 | An assertion holding in atomic orthomodular lattices that is equivalent to the exchange axiom. Proposition P8(ii) of [BeltramettiCassinelli1] p. 400. (Contributed by NM, 12-Jun-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ ((𝐵 ∈ HAtoms ∧ ¬ 𝐵 ⊆ 𝐴) → ((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms) | ||
Theorem | atordi 31905 | An ordering law for a Hilbert lattice atom and a commuting subspace. (Contributed by NM, 12-Jun-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ ((𝐵 ∈ HAtoms ∧ 𝐴 𝐶ℋ 𝐵) → (𝐵 ⊆ 𝐴 ∨ 𝐵 ⊆ (⊥‘𝐴))) | ||
Theorem | atcvatlem 31906 | Lemma for atcvati 31907. (Contributed by NM, 27-Jun-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ (𝐴 ≠ 0ℋ ∧ 𝐴 ⊊ (𝐵 ∨ℋ 𝐶))) → (¬ 𝐵 ⊆ 𝐴 → 𝐴 ∈ HAtoms)) | ||
Theorem | atcvati 31907 | A nonzero Hilbert lattice element less than the join of two atoms is an atom. (Contributed by NM, 28-Jun-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝐴 ≠ 0ℋ ∧ 𝐴 ⊊ (𝐵 ∨ℋ 𝐶)) → 𝐴 ∈ HAtoms)) | ||
Theorem | atcvat2i 31908 | A Hilbert lattice element covered by the join of two distinct atoms is an atom. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((¬ 𝐵 = 𝐶 ∧ 𝐴 ⋖ℋ (𝐵 ∨ℋ 𝐶)) → 𝐴 ∈ HAtoms)) | ||
Theorem | atord 31909 | An ordering law for a Hilbert lattice atom and a commuting subspace. (Contributed by NM, 12-Jun-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐴 𝐶ℋ 𝐵) → (𝐵 ⊆ 𝐴 ∨ 𝐵 ⊆ (⊥‘𝐴))) | ||
Theorem | atcvat2 31910 | A Hilbert lattice element covered by the join of two distinct atoms is an atom. (Contributed by NM, 29-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((¬ 𝐵 = 𝐶 ∧ 𝐴 ⋖ℋ (𝐵 ∨ℋ 𝐶)) → 𝐴 ∈ HAtoms)) | ||
Theorem | chirredlem1 31911* | Lemma for chirredi 31915. (Contributed by NM, 14-Jun-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (((𝑝 ∈ HAtoms ∧ (𝑞 ∈ Cℋ ∧ 𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟 ⊆ 𝐴) ∧ 𝑟 ⊆ (𝑝 ∨ℋ 𝑞))) → (𝑝 ∩ (⊥‘𝑟)) = 0ℋ) | ||
Theorem | chirredlem2 31912* | Lemma for chirredi 31915. (Contributed by NM, 15-Jun-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ ((((𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴) ∧ (𝑞 ∈ Cℋ ∧ 𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟 ⊆ 𝐴) ∧ 𝑟 ⊆ (𝑝 ∨ℋ 𝑞))) → ((⊥‘𝑟) ∩ (𝑝 ∨ℋ 𝑞)) = 𝑞) | ||
Theorem | chirredlem3 31913* | Lemma for chirredi 31915. (Contributed by NM, 15-Jun-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ (𝑥 ∈ Cℋ → 𝐴 𝐶ℋ 𝑥) ⇒ ⊢ ((((𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) ∧ (𝑟 ∈ HAtoms ∧ 𝑟 ⊆ (𝑝 ∨ℋ 𝑞))) → (𝑟 ⊆ 𝐴 → 𝑟 = 𝑝)) | ||
Theorem | chirredlem4 31914* | Lemma for chirredi 31915. (Contributed by NM, 15-Jun-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ (𝑥 ∈ Cℋ → 𝐴 𝐶ℋ 𝑥) ⇒ ⊢ ((((𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) ∧ (𝑟 ∈ HAtoms ∧ 𝑟 ⊆ (𝑝 ∨ℋ 𝑞))) → (𝑟 = 𝑝 ∨ 𝑟 = 𝑞)) | ||
Theorem | chirredi 31915* | The Hilbert lattice is irreducible: any element that commutes with all elements must be zero or one. Theorem 14.8.4 of [BeltramettiCassinelli] p. 166. (Contributed by NM, 15-Jun-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ (𝑥 ∈ Cℋ → 𝐴 𝐶ℋ 𝑥) ⇒ ⊢ (𝐴 = 0ℋ ∨ 𝐴 = ℋ) | ||
Theorem | chirred 31916* | The Hilbert lattice is irreducible: any element that commutes with all elements must be zero or one. Theorem 14.8.4 of [BeltramettiCassinelli] p. 166. (Contributed by NM, 16-Jun-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥) → (𝐴 = 0ℋ ∨ 𝐴 = ℋ)) | ||
Theorem | atcvat3i 31917 | A condition implying that a certain lattice element is an atom. Part of Lemma 3.2.20 of [PtakPulmannova] p. 68. (Contributed by NM, 2-Jul-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶 ⊆ 𝐴) ∧ 𝐵 ⊆ (𝐴 ∨ℋ 𝐶)) → (𝐴 ∩ (𝐵 ∨ℋ 𝐶)) ∈ HAtoms)) | ||
Theorem | atcvat4i 31918* | A condition implying existence of an atom with the properties shown. Lemma 3.2.20 of [PtakPulmannova] p. 68. (Contributed by NM, 2-Jul-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝐴 ≠ 0ℋ ∧ 𝐵 ⊆ (𝐴 ∨ℋ 𝐶)) → ∃𝑥 ∈ HAtoms (𝑥 ⊆ 𝐴 ∧ 𝐵 ⊆ (𝐶 ∨ℋ 𝑥)))) | ||
Theorem | atdmd 31919 | Two Hilbert lattice elements have the dual modular pair property if the first is an atom. Theorem 7.6(c) of [MaedaMaeda] p. 31. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ Cℋ ) → 𝐴 𝑀ℋ* 𝐵) | ||
Theorem | atmd 31920 | Two Hilbert lattice elements have the modular pair property if the first is an atom. Theorem 7.6(b) of [MaedaMaeda] p. 31. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ Cℋ ) → 𝐴 𝑀ℋ 𝐵) | ||
Theorem | atmd2 31921 | Two Hilbert lattice elements have the dual modular pair property if the second is an atom. Part of Exercise 6 of [Kalmbach] p. 103. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → 𝐴 𝑀ℋ 𝐵) | ||
Theorem | atabsi 31922 | Absorption of an incomparable atom. Similar to Exercise 7.1 of [MaedaMaeda] p. 34. (Contributed by NM, 15-Jul-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐶 ∈ HAtoms → (¬ 𝐶 ⊆ (𝐴 ∨ℋ 𝐵) → ((𝐴 ∨ℋ 𝐶) ∩ 𝐵) = (𝐴 ∩ 𝐵))) | ||
Theorem | atabs2i 31923 | Absorption of an incomparable atom. (Contributed by NM, 18-Jul-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐶 ∈ HAtoms → (¬ 𝐶 ⊆ (𝐴 ∨ℋ 𝐵) → ((𝐴 ∨ℋ 𝐶) ∩ (𝐴 ∨ℋ 𝐵)) = 𝐴)) | ||
Theorem | mdsymlem1 31924* | Lemma for mdsymi 31932. (Contributed by NM, 1-Jul-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 = (𝐴 ∨ℋ 𝑝) ⇒ ⊢ (((𝑝 ∈ Cℋ ∧ (𝐵 ∩ 𝐶) ⊆ 𝐴) ∧ (𝐵 𝑀ℋ* 𝐴 ∧ 𝑝 ⊆ (𝐴 ∨ℋ 𝐵))) → 𝑝 ⊆ 𝐴) | ||
Theorem | mdsymlem2 31925* | Lemma for mdsymi 31932. (Contributed by NM, 1-Jul-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 = (𝐴 ∨ℋ 𝑝) ⇒ ⊢ (((𝑝 ∈ HAtoms ∧ (𝐵 ∩ 𝐶) ⊆ 𝐴) ∧ (𝐵 𝑀ℋ* 𝐴 ∧ 𝑝 ⊆ (𝐴 ∨ℋ 𝐵))) → (𝐵 ≠ 0ℋ → ∃𝑟 ∈ HAtoms ∃𝑞 ∈ HAtoms (𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵)))) | ||
Theorem | mdsymlem3 31926* | Lemma for mdsymi 31932. (Contributed by NM, 2-Jul-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 = (𝐴 ∨ℋ 𝑝) ⇒ ⊢ ((((𝑝 ∈ HAtoms ∧ ¬ (𝐵 ∩ 𝐶) ⊆ 𝐴) ∧ 𝑝 ⊆ (𝐴 ∨ℋ 𝐵)) ∧ 𝐴 ≠ 0ℋ) → ∃𝑟 ∈ HAtoms ∃𝑞 ∈ HAtoms (𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵))) | ||
Theorem | mdsymlem4 31927* | Lemma for mdsymi 31932. This is the forward direction of Lemma 4(i) of [Maeda] p. 168. (Contributed by NM, 2-Jul-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 = (𝐴 ∨ℋ 𝑝) ⇒ ⊢ (𝑝 ∈ HAtoms → ((𝐵 𝑀ℋ* 𝐴 ∧ ((𝐴 ≠ 0ℋ ∧ 𝐵 ≠ 0ℋ) ∧ 𝑝 ⊆ (𝐴 ∨ℋ 𝐵))) → ∃𝑞 ∈ HAtoms ∃𝑟 ∈ HAtoms (𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵)))) | ||
Theorem | mdsymlem5 31928* | Lemma for mdsymi 31932. (Contributed by NM, 2-Jul-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 = (𝐴 ∨ℋ 𝑝) ⇒ ⊢ ((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → (¬ 𝑞 = 𝑝 → ((𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵)) → (((𝑐 ∈ Cℋ ∧ 𝐴 ⊆ 𝑐) ∧ 𝑝 ∈ HAtoms) → (𝑝 ⊆ 𝑐 → 𝑝 ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴)))))) | ||
Theorem | mdsymlem6 31929* | Lemma for mdsymi 31932. This is the converse direction of Lemma 4(i) of [Maeda] p. 168, and is based on the proof of Theorem 1(d) to (e) of [Maeda] p. 167. (Contributed by NM, 2-Jul-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 = (𝐴 ∨ℋ 𝑝) ⇒ ⊢ (∀𝑝 ∈ HAtoms (𝑝 ⊆ (𝐴 ∨ℋ 𝐵) → ∃𝑞 ∈ HAtoms ∃𝑟 ∈ HAtoms (𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵))) → 𝐵 𝑀ℋ* 𝐴) | ||
Theorem | mdsymlem7 31930* | Lemma for mdsymi 31932. Lemma 4(i) of [Maeda] p. 168. Note that Maeda's 1965 definition of dual modular pair has reversed arguments compared to the later (1970) definition given in Remark 29.6 of [MaedaMaeda] p. 130, which is the one that we use. (Contributed by NM, 3-Jul-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 = (𝐴 ∨ℋ 𝑝) ⇒ ⊢ ((𝐴 ≠ 0ℋ ∧ 𝐵 ≠ 0ℋ) → (𝐵 𝑀ℋ* 𝐴 ↔ ∀𝑝 ∈ HAtoms (𝑝 ⊆ (𝐴 ∨ℋ 𝐵) → ∃𝑞 ∈ HAtoms ∃𝑟 ∈ HAtoms (𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵))))) | ||
Theorem | mdsymlem8 31931* | Lemma for mdsymi 31932. Lemma 4(ii) of [Maeda] p. 168. (Contributed by NM, 3-Jul-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 = (𝐴 ∨ℋ 𝑝) ⇒ ⊢ ((𝐴 ≠ 0ℋ ∧ 𝐵 ≠ 0ℋ) → (𝐵 𝑀ℋ* 𝐴 ↔ 𝐴 𝑀ℋ* 𝐵)) | ||
Theorem | mdsymi 31932 | M-symmetry of the Hilbert lattice. Lemma 5 of [Maeda] p. 168. (Contributed by NM, 3-Jul-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝑀ℋ 𝐵 ↔ 𝐵 𝑀ℋ 𝐴) | ||
Theorem | mdsym 31933 | M-symmetry of the Hilbert lattice. Lemma 5 of [Maeda] p. 168. (Contributed by NM, 6-Jul-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ 𝐵 ↔ 𝐵 𝑀ℋ 𝐴)) | ||
Theorem | dmdsym 31934 | Dual M-symmetry of the Hilbert lattice. (Contributed by NM, 25-Jul-2007.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 ↔ 𝐵 𝑀ℋ* 𝐴)) | ||
Theorem | atdmd2 31935 | Two Hilbert lattice elements have the dual modular pair property if the second is an atom. (Contributed by NM, 6-Jul-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → 𝐴 𝑀ℋ* 𝐵) | ||
Theorem | sumdmdii 31936 | If the subspace sum of two Hilbert lattice elements is closed, then the elements are a dual modular pair. Remark in [MaedaMaeda] p. 139. (Contributed by NM, 12-Jul-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ ((𝐴 +ℋ 𝐵) = (𝐴 ∨ℋ 𝐵) → 𝐴 𝑀ℋ* 𝐵) | ||
Theorem | cmmdi 31937 | Commuting subspaces form a modular pair. (Contributed by NM, 16-Jan-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝐶ℋ 𝐵 → 𝐴 𝑀ℋ 𝐵) | ||
Theorem | cmdmdi 31938 | Commuting subspaces form a dual modular pair. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝐶ℋ 𝐵 → 𝐴 𝑀ℋ* 𝐵) | ||
Theorem | sumdmdlem 31939 | Lemma for sumdmdi 31941. The span of vector 𝐶 not in the subspace sum is "trimmed off." (Contributed by NM, 18-Dec-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ ((𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 +ℋ 𝐵)) → ((𝐵 +ℋ (span‘{𝐶})) ∩ 𝐴) = (𝐵 ∩ 𝐴)) | ||
Theorem | sumdmdlem2 31940* | Lemma for sumdmdi 31941. (Contributed by NM, 23-Dec-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (∀𝑥 ∈ HAtoms ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) → (𝐴 +ℋ 𝐵) = (𝐴 ∨ℋ 𝐵)) | ||
Theorem | sumdmdi 31941 | The subspace sum of two Hilbert lattice elements is closed iff the elements are a dual modular pair. Theorem 2 of [Holland] p. 1519. (Contributed by NM, 14-Dec-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ ((𝐴 +ℋ 𝐵) = (𝐴 ∨ℋ 𝐵) ↔ 𝐴 𝑀ℋ* 𝐵) | ||
Theorem | dmdbr4ati 31942* | Dual modular pair property in terms of atoms. (Contributed by NM, 15-Jan-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝑀ℋ* 𝐵 ↔ ∀𝑥 ∈ HAtoms ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵)) | ||
Theorem | dmdbr5ati 31943* | Dual modular pair property in terms of atoms. (Contributed by NM, 14-Jan-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝑀ℋ* 𝐵 ↔ ∀𝑥 ∈ HAtoms (𝑥 ⊆ (𝐴 ∨ℋ 𝐵) → 𝑥 ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵))) | ||
Theorem | dmdbr6ati 31944* | Dual modular pair property in terms of atoms. The modular law takes the form of the shearing identity. (Contributed by NM, 18-Jan-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝑀ℋ* 𝐵 ↔ ∀𝑥 ∈ HAtoms ((𝐴 ∨ℋ 𝐵) ∩ 𝑥) = ((((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) ∩ 𝑥)) | ||
Theorem | dmdbr7ati 31945* | Dual modular pair property in terms of atoms. (Contributed by NM, 18-Jan-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝑀ℋ* 𝐵 ↔ ∀𝑥 ∈ HAtoms ((𝐴 ∨ℋ 𝐵) ∩ 𝑥) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵)) | ||
Theorem | mdoc1i 31946 | Orthocomplements form a modular pair. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ 𝐴 𝑀ℋ (⊥‘𝐴) | ||
Theorem | mdoc2i 31947 | Orthocomplements form a modular pair. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (⊥‘𝐴) 𝑀ℋ 𝐴 | ||
Theorem | dmdoc1i 31948 | Orthocomplements form a dual modular pair. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ 𝐴 𝑀ℋ* (⊥‘𝐴) | ||
Theorem | dmdoc2i 31949 | Orthocomplements form a dual modular pair. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (⊥‘𝐴) 𝑀ℋ* 𝐴 | ||
Theorem | mdcompli 31950 | A condition equivalent to the modular pair property. Part of proof of Theorem 1.14 of [MaedaMaeda] p. 4. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝑀ℋ 𝐵 ↔ (𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) 𝑀ℋ (𝐵 ∩ (⊥‘(𝐴 ∩ 𝐵)))) | ||
Theorem | dmdcompli 31951 | A condition equivalent to the dual modular pair property. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝑀ℋ* 𝐵 ↔ (𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) 𝑀ℋ* (𝐵 ∩ (⊥‘(𝐴 ∩ 𝐵)))) | ||
Theorem | mddmdin0i 31952* | If dual modular implies modular whenever meet is zero, then dual modular implies modular for arbitrary lattice elements. This theorem is needed for the remark after Lemma 7 of [Holland] p. 1524 to hold. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ ((𝑥 𝑀ℋ* 𝑦 ∧ (𝑥 ∩ 𝑦) = 0ℋ) → 𝑥 𝑀ℋ 𝑦) ⇒ ⊢ (𝐴 𝑀ℋ* 𝐵 → 𝐴 𝑀ℋ 𝐵) | ||
Theorem | cdjreui 31953* | A member of the sum of disjoint subspaces has a unique decomposition. Part of Lemma 5 of [Holland] p. 1520. (Contributed by NM, 20-May-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ ((𝐶 ∈ (𝐴 +ℋ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → ∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥 +ℎ 𝑦)) | ||
Theorem | cdj1i 31954* | Two ways to express "𝐴 and 𝐵 are completely disjoint subspaces." (1) => (2) in Lemma 5 of [Holland] p. 1520. (Contributed by NM, 21-May-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (∃𝑤 ∈ ℝ (0 < 𝑤 ∧ ∀𝑦 ∈ 𝐴 ∀𝑣 ∈ 𝐵 ((normℎ‘𝑦) + (normℎ‘𝑣)) ≤ (𝑤 · (normℎ‘(𝑦 +ℎ 𝑣)))) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ((normℎ‘𝑦) = 1 → 𝑥 ≤ (normℎ‘(𝑦 −ℎ 𝑧))))) | ||
Theorem | cdj3lem1 31955* | A property of "𝐴 and 𝐵 are completely disjoint subspaces." Part of Lemma 5 of [Holland] p. 1520. (Contributed by NM, 23-May-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (∃𝑥 ∈ ℝ (0 < 𝑥 ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ((normℎ‘𝑦) + (normℎ‘𝑧)) ≤ (𝑥 · (normℎ‘(𝑦 +ℎ 𝑧)))) → (𝐴 ∩ 𝐵) = 0ℋ) | ||
Theorem | cdj3lem2 31956* | Lemma for cdj3i 31962. Value of the first-component function 𝑆. (Contributed by NM, 23-May-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝑆 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑤))) ⇒ ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑆‘(𝐶 +ℎ 𝐷)) = 𝐶) | ||
Theorem | cdj3lem2a 31957* | Lemma for cdj3i 31962. Closure of the first-component function 𝑆. (Contributed by NM, 25-May-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝑆 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑤))) ⇒ ⊢ ((𝐶 ∈ (𝐴 +ℋ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑆‘𝐶) ∈ 𝐴) | ||
Theorem | cdj3lem2b 31958* | Lemma for cdj3i 31962. The first-component function 𝑆 is bounded if the subspaces are completely disjoint. (Contributed by NM, 26-May-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝑆 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑤))) ⇒ ⊢ (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((normℎ‘𝑥) + (normℎ‘𝑦)) ≤ (𝑣 · (normℎ‘(𝑥 +ℎ 𝑦)))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 +ℋ 𝐵)(normℎ‘(𝑆‘𝑢)) ≤ (𝑣 · (normℎ‘𝑢)))) | ||
Theorem | cdj3lem3 31959* | Lemma for cdj3i 31962. Value of the second-component function 𝑇. (Contributed by NM, 23-May-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝑇 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑤))) ⇒ ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑇‘(𝐶 +ℎ 𝐷)) = 𝐷) | ||
Theorem | cdj3lem3a 31960* | Lemma for cdj3i 31962. Closure of the second-component function 𝑇. (Contributed by NM, 26-May-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝑇 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑤))) ⇒ ⊢ ((𝐶 ∈ (𝐴 +ℋ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑇‘𝐶) ∈ 𝐵) | ||
Theorem | cdj3lem3b 31961* | Lemma for cdj3i 31962. The second-component function 𝑇 is bounded if the subspaces are completely disjoint. (Contributed by NM, 31-May-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝑇 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑤))) ⇒ ⊢ (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((normℎ‘𝑥) + (normℎ‘𝑦)) ≤ (𝑣 · (normℎ‘(𝑥 +ℎ 𝑦)))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 +ℋ 𝐵)(normℎ‘(𝑇‘𝑢)) ≤ (𝑣 · (normℎ‘𝑢)))) | ||
Theorem | cdj3i 31962* | Two ways to express "𝐴 and 𝐵 are completely disjoint subspaces." (1) <=> (3) in Lemma 5 of [Holland] p. 1520. (Contributed by NM, 1-Jun-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝑆 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑤))) & ⊢ 𝑇 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑤))) & ⊢ (𝜑 ↔ ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 +ℋ 𝐵)(normℎ‘(𝑆‘𝑢)) ≤ (𝑣 · (normℎ‘𝑢)))) & ⊢ (𝜓 ↔ ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 +ℋ 𝐵)(normℎ‘(𝑇‘𝑢)) ≤ (𝑣 · (normℎ‘𝑢)))) ⇒ ⊢ (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((normℎ‘𝑥) + (normℎ‘𝑦)) ≤ (𝑣 · (normℎ‘(𝑥 +ℎ 𝑦)))) ↔ ((𝐴 ∩ 𝐵) = 0ℋ ∧ 𝜑 ∧ 𝜓)) | ||
Theorem | mathbox 31963 |
(This theorem is a dummy placeholder for these guidelines. The label
of this theorem, "mathbox", is hard-coded into the Metamath
program to
identify the start of the mathbox section for web page generation.)
A "mathbox" is a user-contributed section that is maintained by its contributor independently from the main part of set.mm. For contributors: By making a contribution, you agree to release it into the public domain, according to the statement at the beginning of set.mm. Mathboxes are provided to help keep your work synchronized with changes in set.mm while allowing you to work independently without affecting other contributors. Even though in a sense your mathbox belongs to you, it is still part of the shared body of knowledge contained in set.mm, and occasionally other people may make maintenance edits to your mathbox for things like keeping it synchronized with the rest of set.mm, reducing proof lengths, moving your theorems to the main part of set.mm when needed, and fixing typos or other errors. If you want to preserve it the way you left it, you can keep a local copy or keep track of the GitHub commit number. Guidelines: 1. See conventions 29921 for our general style guidelines. For contributing via GitHub, see https://github.com/metamath/set.mm/blob/develop/CONTRIBUTING.md 29921. The Metamath program command "verify markup *" will check that you have followed many of the conventions we use. 2. If at all possible, please use only nullary class constants for new definitions, for example as in df-div 11877. 3. Each $p and $a statement must be immediately preceded with the comment that will be shown on its web page description. The Metamath program "MM> WRITE SOURCE set.mm / REWRAP" command will take care of indentation conventions and line wrapping. 4. All mathbox content will be on public display and should hopefully reflect the overall quality of the website. 5. Mathboxes must be independent from one another (checked by "verify markup *"). If you need a theorem from another mathbox, typically it is moved to the main part of set.mm. New users should consult with more experienced users before doing this. 6. If a contributor is no longer active, we will continue the usual maintenance edits. As time goes on, often theorems will be moved to main or removed in favor of similar replacements. But we are also willing to maintain mathboxes in place, as work by others from years ago may form the foundation of future work; you could even argue that all of mathematics is like that. 7. For theorems of importance (for example, a Metamath 100 theorem or a dependency of one), we prefer to eventually move them out of mathboxes (although a mathbox is perfectly appropriate as proofs are being developed and refined). (Contributed by NM, 20-Feb-2007.) (Revised by the Metamath team, 9-Sep-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 ⇒ ⊢ 𝜑 | ||
Theorem | sa-abvi 31964 | A theorem about the universal class. Inference associated with bj-abv 36090 (which is proved from fewer axioms). (Contributed by Stefan Allan, 9-Dec-2008.) |
⊢ 𝜑 ⇒ ⊢ V = {𝑥 ∣ 𝜑} | ||
Theorem | xfree 31965 | A partial converse to 19.9t 2196. (Contributed by Stefan Allan, 21-Dec-2008.) (Revised by Mario Carneiro, 11-Dec-2016.) |
⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ ∀𝑥(∃𝑥𝜑 → 𝜑)) | ||
Theorem | xfree2 31966 | A partial converse to 19.9t 2196. (Contributed by Stefan Allan, 21-Dec-2008.) |
⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ ∀𝑥(¬ 𝜑 → ∀𝑥 ¬ 𝜑)) | ||
Theorem | addltmulALT 31967 | A proof readability experiment for addltmul 12453. (Contributed by Stefan Allan, 30-Oct-2010.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (2 < 𝐴 ∧ 2 < 𝐵)) → (𝐴 + 𝐵) < (𝐴 · 𝐵)) | ||
Theorem | bian1d 31968 | Adding a superfluous conjunct in a biconditional. (Contributed by Thierry Arnoux, 26-Feb-2017.) |
⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) ⇒ ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜒 ∧ 𝜃))) | ||
Theorem | or3di 31969 | Distributive law for disjunction. (Contributed by Thierry Arnoux, 3-Jul-2017.) |
⊢ ((𝜑 ∨ (𝜓 ∧ 𝜒 ∧ 𝜏)) ↔ ((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒) ∧ (𝜑 ∨ 𝜏))) | ||
Theorem | or3dir 31970 | Distributive law for disjunction. (Contributed by Thierry Arnoux, 3-Jul-2017.) |
⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∨ 𝜏) ↔ ((𝜑 ∨ 𝜏) ∧ (𝜓 ∨ 𝜏) ∧ (𝜒 ∨ 𝜏))) | ||
Theorem | 3o1cs 31971 | Deduction eliminating disjunct. (Contributed by Thierry Arnoux, 19-Dec-2016.) |
⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) → 𝜃) ⇒ ⊢ (𝜑 → 𝜃) | ||
Theorem | 3o2cs 31972 | Deduction eliminating disjunct. (Contributed by Thierry Arnoux, 19-Dec-2016.) |
⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) → 𝜃) ⇒ ⊢ (𝜓 → 𝜃) | ||
Theorem | 3o3cs 31973 | Deduction eliminating disjunct. (Contributed by Thierry Arnoux, 19-Dec-2016.) |
⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) → 𝜃) ⇒ ⊢ (𝜒 → 𝜃) | ||
Theorem | 13an22anass 31974 | Associative law for four conjunctions with a triple conjunction. (Contributed by Thierry Arnoux, 21-Jan-2025.) |
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃))) | ||
Theorem | sbc2iedf 31975* | Conversion of implicit substitution to explicit class substitution. (Contributed by Thierry Arnoux, 4-Jul-2023.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜒 & ⊢ Ⅎ𝑦𝜒 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜓 ↔ 𝜒)) | ||
Theorem | rspc2daf 31976* | Double restricted specialization, using implicit substitution. (Contributed by Thierry Arnoux, 4-Jul-2023.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜒 & ⊢ Ⅎ𝑦𝜒 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑊 𝜓) ⇒ ⊢ (𝜑 → 𝜒) | ||
Theorem | ralcom4f 31977* | Commutation of restricted and unrestricted universal quantifiers. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (Revised by Thierry Arnoux, 8-Mar-2017.) |
⊢ Ⅎ𝑦𝐴 ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦𝜑 ↔ ∀𝑦∀𝑥 ∈ 𝐴 𝜑) | ||
Theorem | rexcom4f 31978* | Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (Revised by Thierry Arnoux, 8-Mar-2017.) |
⊢ Ⅎ𝑦𝐴 ⇒ ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) | ||
Theorem | 19.9d2rf 31979 | A deduction version of one direction of 19.9 2197 with two variables. (Contributed by Thierry Arnoux, 20-Mar-2017.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜓) & ⊢ (𝜑 → Ⅎ𝑦𝜓) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | 19.9d2r 31980* | A deduction version of one direction of 19.9 2197 with two variables. (Contributed by Thierry Arnoux, 30-Jan-2017.) |
⊢ (𝜑 → Ⅎ𝑥𝜓) & ⊢ (𝜑 → Ⅎ𝑦𝜓) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | r19.29ffa 31981* | A commonly used pattern based on r19.29 3113, version with two restricted quantifiers. (Contributed by Thierry Arnoux, 26-Nov-2017.) |
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) ⇒ ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) → 𝜒) | ||
Theorem | eqtrb 31982 | A transposition of equality. (Contributed by Thierry Arnoux, 20-Aug-2023.) |
⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐶) ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐶)) | ||
Theorem | eqelbid 31983* | A variable elimination law for equality within a given set 𝐴. See equvel 2454. (Contributed by Thierry Arnoux, 20-Feb-2025.) |
⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 (𝑥 = 𝐵 ↔ 𝑥 = 𝐶) ↔ 𝐵 = 𝐶)) | ||
Theorem | opsbc2ie 31984* | Conversion of implicit substitution to explicit class substitution for ordered pairs. (Contributed by Thierry Arnoux, 4-Jul-2023.) |
⊢ (𝑝 = ⟨𝑎, 𝑏⟩ → (𝜑 ↔ 𝜒)) ⇒ ⊢ (𝑝 = ⟨𝑥, 𝑦⟩ → (𝜑 ↔ [𝑦 / 𝑏][𝑥 / 𝑎]𝜒)) | ||
Theorem | opreu2reuALT 31985* | Correspondence between uniqueness of ordered pairs and double restricted existential uniqueness quantification. Alternate proof of one direction only, use opreu2reurex 6293 instead. (Contributed by Thierry Arnoux, 4-Jul-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝑝 = ⟨𝑎, 𝑏⟩ → (𝜑 ↔ 𝜒)) ⇒ ⊢ ((∃!𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ ∃!𝑏 ∈ 𝐵 ∃𝑎 ∈ 𝐴 𝜒) → ∃!𝑝 ∈ (𝐴 × 𝐵)𝜑) | ||
Syntax | w2reu 31986 | Syntax for double restricted existential uniqueness quantification. |
wff ∃!𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵𝜑 | ||
Definition | df-2reu 31987 | Define the double restricted existential uniqueness quantifier. (Contributed by Thierry Arnoux, 4-Jul-2023.) |
⊢ (∃!𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵𝜑 ↔ (∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑)) | ||
Theorem | 2reucom 31988 | Double restricted existential uniqueness commutes. (Contributed by Thierry Arnoux, 4-Jul-2023.) |
⊢ (∃!𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵𝜑 ↔ ∃!𝑦 ∈ 𝐵 , 𝑥 ∈ 𝐴𝜑) | ||
Theorem | 2reu2rex1 31989 | Double restricted existential uniqueness implies double restricted existence. (Contributed by Thierry Arnoux, 4-Jul-2023.) |
⊢ (∃!𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) | ||
Theorem | 2reureurex 31990 | Double restricted existential uniqueness implies restricted existential uniqueness with restricted existence. (Contributed by AV, 5-Jul-2023.) |
⊢ (∃!𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵𝜑 → ∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) | ||
Theorem | 2reu2reu2 31991* | Double restricted existential uniqueness implies two nested restricted existential uniqueness. (Contributed by AV, 5-Jul-2023.) |
⊢ (∃!𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵𝜑 → ∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑) | ||
Theorem | opreu2reu1 31992* | Equivalent definition of the double restricted existential uniqueness quantifier, using uniqueness of ordered pairs. (Contributed by Thierry Arnoux, 4-Jul-2023.) |
⊢ (𝑝 = ⟨𝑥, 𝑦⟩ → (𝜒 ↔ 𝜑)) ⇒ ⊢ (∃!𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵𝜑 ↔ ∃!𝑝 ∈ (𝐴 × 𝐵)𝜒) | ||
Theorem | sq2reunnltb 31993* | There exists a unique decomposition of a prime as a sum of squares of two different positive integers iff the prime is of the form 4𝑘 + 1. Double restricted existential uniqueness variant of 2sqreunnltb 27201. (Contributed by AV, 5-Jul-2023.) |
⊢ (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ ∃!𝑎 ∈ ℕ , 𝑏 ∈ ℕ(𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))) | ||
Theorem | addsqnot2reu 31994* | For each complex number 𝐶, there does not uniquely exist two complex numbers 𝑎 and 𝑏, with 𝑏 squared and added to 𝑎 resulting in the given complex number 𝐶. Double restricted existential uniqueness variant of addsqn2reurex2 27185. (Contributed by AV, 5-Jul-2023.) |
⊢ (𝐶 ∈ ℂ → ¬ ∃!𝑎 ∈ ℂ , 𝑏 ∈ ℂ(𝑎 + (𝑏↑2)) = 𝐶) | ||
Theorem | sbceqbidf 31995 | Equality theorem for class substitution. (Contributed by Thierry Arnoux, 4-Sep-2018.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑥]𝜒)) | ||
Theorem | sbcies 31996* | A special version of class substitution commonly used for structures. (Contributed by Thierry Arnoux, 14-Mar-2019.) |
⊢ 𝐴 = (𝐸‘𝑊) & ⊢ (𝑎 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝑤 = 𝑊 → ([(𝐸‘𝑤) / 𝑎]𝜓 ↔ 𝜑)) | ||
Theorem | mo5f 31997* | Alternate definition of "at most one." (Contributed by Thierry Arnoux, 1-Mar-2017.) |
⊢ Ⅎ𝑖𝜑 & ⊢ Ⅎ𝑗𝜑 ⇒ ⊢ (∃*𝑥𝜑 ↔ ∀𝑖∀𝑗(([𝑖 / 𝑥]𝜑 ∧ [𝑗 / 𝑥]𝜑) → 𝑖 = 𝑗)) | ||
Theorem | nmo 31998* | Negation of "at most one". (Contributed by Thierry Arnoux, 26-Feb-2017.) |
⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (¬ ∃*𝑥𝜑 ↔ ∀𝑦∃𝑥(𝜑 ∧ 𝑥 ≠ 𝑦)) | ||
Theorem | reuxfrdf 31999* | Transfer existential uniqueness from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. Cf. reuxfrd 3744 (Contributed by Thierry Arnoux, 7-Apr-2017.) (Revised by Thierry Arnoux, 8-Oct-2017.) (Revised by Thierry Arnoux, 30-Mar-2018.) |
⊢ Ⅎ𝑦𝐵 & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃*𝑦 ∈ 𝐶 𝑥 = 𝐴) ⇒ ⊢ (𝜑 → (∃!𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓) ↔ ∃!𝑦 ∈ 𝐶 𝜓)) | ||
Theorem | rexunirn 32000* | Restricted existential quantification over the union of the range of a function. Cf. rexrn 7088 and eluni2 4912. (Contributed by Thierry Arnoux, 19-Sep-2017.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝑉) ⇒ ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑦 ∈ ∪ ran 𝐹𝜑) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |