| Metamath
Proof Explorer Theorem List (p. 320 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | lnopmuli 31901 | Multiplicative property of a linear Hilbert space operator. (Contributed by NM, 11-May-2005.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 ·ℎ 𝐵)) = (𝐴 ·ℎ (𝑇‘𝐵))) | ||
| Theorem | lnopaddmuli 31902 | Sum/product property of a linear Hilbert space operator. (Contributed by NM, 1-Jul-2005.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑇‘(𝐵 +ℎ (𝐴 ·ℎ 𝐶))) = ((𝑇‘𝐵) +ℎ (𝐴 ·ℎ (𝑇‘𝐶)))) | ||
| Theorem | lnopsubi 31903 | Subtraction property for a linear Hilbert space operator. (Contributed by NM, 1-Jul-2005.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 −ℎ 𝐵)) = ((𝑇‘𝐴) −ℎ (𝑇‘𝐵))) | ||
| Theorem | lnopsubmuli 31904 | Subtraction/product property of a linear Hilbert space operator. (Contributed by NM, 2-Jul-2005.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑇‘(𝐵 −ℎ (𝐴 ·ℎ 𝐶))) = ((𝑇‘𝐵) −ℎ (𝐴 ·ℎ (𝑇‘𝐶)))) | ||
| Theorem | lnopmulsubi 31905 | Product/subtraction property of a linear Hilbert space operator. (Contributed by NM, 2-Jul-2005.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑇‘((𝐴 ·ℎ 𝐵) −ℎ 𝐶)) = ((𝐴 ·ℎ (𝑇‘𝐵)) −ℎ (𝑇‘𝐶))) | ||
| Theorem | homco2 31906 | Move a scalar product out of a composition of operators. The operator 𝑇 must be linear, unlike homco1 31730 that works for any operators. (Contributed by NM, 13-Aug-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝑈: ℋ⟶ ℋ) → (𝑇 ∘ (𝐴 ·op 𝑈)) = (𝐴 ·op (𝑇 ∘ 𝑈))) | ||
| Theorem | idunop 31907 | The identity function (restricted to Hilbert space) is a unitary operator. (Contributed by NM, 21-Jan-2006.) (New usage is discouraged.) |
| ⊢ ( I ↾ ℋ) ∈ UniOp | ||
| Theorem | 0cnop 31908 | The identically zero function is a continuous Hilbert space operator. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
| ⊢ 0hop ∈ ContOp | ||
| Theorem | 0cnfn 31909 | The identically zero function is a continuous Hilbert space functional. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
| ⊢ ( ℋ × {0}) ∈ ContFn | ||
| Theorem | idcnop 31910 | The identity function (restricted to Hilbert space) is a continuous operator. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
| ⊢ ( I ↾ ℋ) ∈ ContOp | ||
| Theorem | idhmop 31911 | The Hilbert space identity operator is a Hermitian operator. (Contributed by NM, 22-Apr-2006.) (New usage is discouraged.) |
| ⊢ Iop ∈ HrmOp | ||
| Theorem | 0hmop 31912 | The identically zero function is a Hermitian operator. (Contributed by NM, 8-Aug-2006.) (New usage is discouraged.) |
| ⊢ 0hop ∈ HrmOp | ||
| Theorem | 0lnop 31913 | The identically zero function is a linear Hilbert space operator. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
| ⊢ 0hop ∈ LinOp | ||
| Theorem | 0lnfn 31914 | The identically zero function is a linear Hilbert space functional. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
| ⊢ ( ℋ × {0}) ∈ LinFn | ||
| Theorem | nmop0 31915 | The norm of the zero operator is zero. (Contributed by NM, 8-Feb-2006.) (New usage is discouraged.) |
| ⊢ (normop‘ 0hop ) = 0 | ||
| Theorem | nmfn0 31916 | The norm of the identically zero functional is zero. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.) |
| ⊢ (normfn‘( ℋ × {0})) = 0 | ||
| Theorem | hmopbdoptHIL 31917 | A Hermitian operator is a bounded linear operator (Hellinger-Toeplitz Theorem). (Contributed by NM, 18-Jan-2008.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ HrmOp → 𝑇 ∈ BndLinOp) | ||
| Theorem | hoddii 31918 | Distributive law for Hilbert space operator difference. (Interestingly, the reverse distributive law hocsubdiri 31709 does not require linearity.) (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.) |
| ⊢ 𝑅 ∈ LinOp & ⊢ 𝑆: ℋ⟶ ℋ & ⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ (𝑅 ∘ (𝑆 −op 𝑇)) = ((𝑅 ∘ 𝑆) −op (𝑅 ∘ 𝑇)) | ||
| Theorem | hoddi 31919 | Distributive law for Hilbert space operator difference. (Interestingly, the reverse distributive law hocsubdiri 31709 does not require linearity.) (Contributed by NM, 23-Aug-2006.) (New usage is discouraged.) |
| ⊢ ((𝑅 ∈ LinOp ∧ 𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑅 ∘ (𝑆 −op 𝑇)) = ((𝑅 ∘ 𝑆) −op (𝑅 ∘ 𝑇))) | ||
| Theorem | nmop0h 31920 | The norm of any operator on the trivial Hilbert space is zero. (This is the reason we need ℋ ≠ 0ℋ in nmopun 31943.) (Contributed by NM, 24-Feb-2006.) (New usage is discouraged.) |
| ⊢ (( ℋ = 0ℋ ∧ 𝑇: ℋ⟶ ℋ) → (normop‘𝑇) = 0) | ||
| Theorem | idlnop 31921 | The identity function (restricted to Hilbert space) is a linear operator. (Contributed by NM, 24-Jan-2006.) (New usage is discouraged.) |
| ⊢ ( I ↾ ℋ) ∈ LinOp | ||
| Theorem | 0bdop 31922 | The identically zero operator is bounded. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
| ⊢ 0hop ∈ BndLinOp | ||
| Theorem | adj0 31923 | Adjoint of the zero operator. (Contributed by NM, 20-Feb-2006.) (New usage is discouraged.) |
| ⊢ (adjℎ‘ 0hop ) = 0hop | ||
| Theorem | nmlnop0iALT 31924 | A linear operator with a zero norm is identically zero. (Contributed by NM, 8-Feb-2006.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝑇 ∈ LinOp ⇒ ⊢ ((normop‘𝑇) = 0 ↔ 𝑇 = 0hop ) | ||
| Theorem | nmlnop0iHIL 31925 | A linear operator with a zero norm is identically zero. (Contributed by NM, 18-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp ⇒ ⊢ ((normop‘𝑇) = 0 ↔ 𝑇 = 0hop ) | ||
| Theorem | nmlnopgt0i 31926 | A linear Hilbert space operator that is not identically zero has a positive norm. (Contributed by NM, 9-Feb-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp ⇒ ⊢ (𝑇 ≠ 0hop ↔ 0 < (normop‘𝑇)) | ||
| Theorem | nmlnop0 31927 | A linear operator with a zero norm is identically zero. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ LinOp → ((normop‘𝑇) = 0 ↔ 𝑇 = 0hop )) | ||
| Theorem | nmlnopne0 31928 | A linear operator with a nonzero norm is nonzero. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ LinOp → ((normop‘𝑇) ≠ 0 ↔ 𝑇 ≠ 0hop )) | ||
| Theorem | lnopmi 31929 | The scalar product of a linear operator is a linear operator. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp ⇒ ⊢ (𝐴 ∈ ℂ → (𝐴 ·op 𝑇) ∈ LinOp) | ||
| Theorem | lnophsi 31930 | The sum of two linear operators is linear. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
| ⊢ 𝑆 ∈ LinOp & ⊢ 𝑇 ∈ LinOp ⇒ ⊢ (𝑆 +op 𝑇) ∈ LinOp | ||
| Theorem | lnophdi 31931 | The difference of two linear operators is linear. (Contributed by NM, 27-Jul-2006.) (New usage is discouraged.) |
| ⊢ 𝑆 ∈ LinOp & ⊢ 𝑇 ∈ LinOp ⇒ ⊢ (𝑆 −op 𝑇) ∈ LinOp | ||
| Theorem | lnopcoi 31932 | The composition of two linear operators is linear. (Contributed by NM, 8-Mar-2006.) (New usage is discouraged.) |
| ⊢ 𝑆 ∈ LinOp & ⊢ 𝑇 ∈ LinOp ⇒ ⊢ (𝑆 ∘ 𝑇) ∈ LinOp | ||
| Theorem | lnopco0i 31933 | The composition of a linear operator with one whose norm is zero. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
| ⊢ 𝑆 ∈ LinOp & ⊢ 𝑇 ∈ LinOp ⇒ ⊢ ((normop‘𝑇) = 0 → (normop‘(𝑆 ∘ 𝑇)) = 0) | ||
| Theorem | lnopeq0lem1 31934 | Lemma for lnopeq0i 31936. Apply the generalized polarization identity polid2i 31086 to the quadratic form ((𝑇‘𝑥), 𝑥). (Contributed by NM, 26-Jul-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp & ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ ((𝑇‘𝐴) ·ih 𝐵) = (((((𝑇‘(𝐴 +ℎ 𝐵)) ·ih (𝐴 +ℎ 𝐵)) − ((𝑇‘(𝐴 −ℎ 𝐵)) ·ih (𝐴 −ℎ 𝐵))) + (i · (((𝑇‘(𝐴 +ℎ (i ·ℎ 𝐵))) ·ih (𝐴 +ℎ (i ·ℎ 𝐵))) − ((𝑇‘(𝐴 −ℎ (i ·ℎ 𝐵))) ·ih (𝐴 −ℎ (i ·ℎ 𝐵)))))) / 4) | ||
| Theorem | lnopeq0lem2 31935 | Lemma for lnopeq0i 31936. (Contributed by NM, 26-Jul-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇‘𝐴) ·ih 𝐵) = (((((𝑇‘(𝐴 +ℎ 𝐵)) ·ih (𝐴 +ℎ 𝐵)) − ((𝑇‘(𝐴 −ℎ 𝐵)) ·ih (𝐴 −ℎ 𝐵))) + (i · (((𝑇‘(𝐴 +ℎ (i ·ℎ 𝐵))) ·ih (𝐴 +ℎ (i ·ℎ 𝐵))) − ((𝑇‘(𝐴 −ℎ (i ·ℎ 𝐵))) ·ih (𝐴 −ℎ (i ·ℎ 𝐵)))))) / 4)) | ||
| Theorem | lnopeq0i 31936* | A condition implying that a linear Hilbert space operator is identically zero. Unlike ho01i 31757 for arbitrary operators, when the operator is linear we need to consider only the values of the quadratic form (𝑇‘𝑥) ·ih 𝑥). (Contributed by NM, 26-Jul-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp ⇒ ⊢ (∀𝑥 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑥) = 0 ↔ 𝑇 = 0hop ) | ||
| Theorem | lnopeqi 31937* | Two linear Hilbert space operators are equal iff their quadratic forms are equal. (Contributed by NM, 27-Jul-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp & ⊢ 𝑈 ∈ LinOp ⇒ ⊢ (∀𝑥 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑥) = ((𝑈‘𝑥) ·ih 𝑥) ↔ 𝑇 = 𝑈) | ||
| Theorem | lnopeq 31938* | Two linear Hilbert space operators are equal iff their quadratic forms are equal. (Contributed by NM, 27-Jul-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ LinOp ∧ 𝑈 ∈ LinOp) → (∀𝑥 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑥) = ((𝑈‘𝑥) ·ih 𝑥) ↔ 𝑇 = 𝑈)) | ||
| Theorem | lnopunilem1 31939* | Lemma for lnopunii 31941. (Contributed by NM, 14-May-2005.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp & ⊢ ∀𝑥 ∈ ℋ (normℎ‘(𝑇‘𝑥)) = (normℎ‘𝑥) & ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ (ℜ‘(𝐶 · ((𝑇‘𝐴) ·ih (𝑇‘𝐵)))) = (ℜ‘(𝐶 · (𝐴 ·ih 𝐵))) | ||
| Theorem | lnopunilem2 31940* | Lemma for lnopunii 31941. (Contributed by NM, 12-May-2005.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp & ⊢ ∀𝑥 ∈ ℋ (normℎ‘(𝑇‘𝑥)) = (normℎ‘𝑥) & ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ ⇒ ⊢ ((𝑇‘𝐴) ·ih (𝑇‘𝐵)) = (𝐴 ·ih 𝐵) | ||
| Theorem | lnopunii 31941* | If a linear operator (whose range is ℋ) is idempotent in the norm, the operator is unitary. Similar to theorem in [AkhiezerGlazman] p. 73. (Contributed by NM, 23-Jan-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp & ⊢ 𝑇: ℋ–onto→ ℋ & ⊢ ∀𝑥 ∈ ℋ (normℎ‘(𝑇‘𝑥)) = (normℎ‘𝑥) ⇒ ⊢ 𝑇 ∈ UniOp | ||
| Theorem | elunop2 31942* | An operator is unitary iff it is linear, onto, and idempotent in the norm. Similar to theorem in [AkhiezerGlazman] p. 73, and its converse. (Contributed by NM, 24-Feb-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ UniOp ↔ (𝑇 ∈ LinOp ∧ 𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ (normℎ‘(𝑇‘𝑥)) = (normℎ‘𝑥))) | ||
| Theorem | nmopun 31943 | Norm of a unitary Hilbert space operator. (Contributed by NM, 25-Feb-2006.) (New usage is discouraged.) |
| ⊢ (( ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp) → (normop‘𝑇) = 1) | ||
| Theorem | unopbd 31944 | A unitary operator is a bounded linear operator. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ UniOp → 𝑇 ∈ BndLinOp) | ||
| Theorem | lnophmlem1 31945* | Lemma for lnophmi 31947. (Contributed by NM, 24-Jan-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝑇 ∈ LinOp & ⊢ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇‘𝑥)) ∈ ℝ ⇒ ⊢ (𝐴 ·ih (𝑇‘𝐴)) ∈ ℝ | ||
| Theorem | lnophmlem2 31946* | Lemma for lnophmi 31947. (Contributed by NM, 24-Jan-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝑇 ∈ LinOp & ⊢ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇‘𝑥)) ∈ ℝ ⇒ ⊢ (𝐴 ·ih (𝑇‘𝐵)) = ((𝑇‘𝐴) ·ih 𝐵) | ||
| Theorem | lnophmi 31947* | A linear operator is Hermitian if 𝑥 ·ih (𝑇‘𝑥) takes only real values. Remark in [ReedSimon] p. 195. (Contributed by NM, 24-Jan-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp & ⊢ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇‘𝑥)) ∈ ℝ ⇒ ⊢ 𝑇 ∈ HrmOp | ||
| Theorem | lnophm 31948* | A linear operator is Hermitian if 𝑥 ·ih (𝑇‘𝑥) takes only real values. Remark in [ReedSimon] p. 195. (Contributed by NM, 24-Jan-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ LinOp ∧ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇‘𝑥)) ∈ ℝ) → 𝑇 ∈ HrmOp) | ||
| Theorem | hmops 31949 | The sum of two Hermitian operators is Hermitian. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (𝑇 +op 𝑈) ∈ HrmOp) | ||
| Theorem | hmopm 31950 | The scalar product of a Hermitian operator with a real is Hermitian. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) → (𝐴 ·op 𝑇) ∈ HrmOp) | ||
| Theorem | hmopd 31951 | The difference of two Hermitian operators is Hermitian. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (𝑇 −op 𝑈) ∈ HrmOp) | ||
| Theorem | hmopco 31952 | The composition of two commuting Hermitian operators is Hermitian. (Contributed by NM, 22-Aug-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ∧ (𝑇 ∘ 𝑈) = (𝑈 ∘ 𝑇)) → (𝑇 ∘ 𝑈) ∈ HrmOp) | ||
| Theorem | nmbdoplbi 31953 | A lower bound for the norm of a bounded linear operator. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ BndLinOp ⇒ ⊢ (𝐴 ∈ ℋ → (normℎ‘(𝑇‘𝐴)) ≤ ((normop‘𝑇) · (normℎ‘𝐴))) | ||
| Theorem | nmbdoplb 31954 | A lower bound for the norm of a bounded linear Hilbert space operator. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ BndLinOp ∧ 𝐴 ∈ ℋ) → (normℎ‘(𝑇‘𝐴)) ≤ ((normop‘𝑇) · (normℎ‘𝐴))) | ||
| Theorem | nmcexi 31955* | Lemma for nmcopexi 31956 and nmcfnexi 31980. The norm of a continuous linear Hilbert space operator or functional exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by Mario Carneiro, 17-Nov-2013.) (Proof shortened by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ ℋ ((normℎ‘𝑧) < 𝑦 → (𝑁‘(𝑇‘𝑧)) < 1) & ⊢ (𝑆‘𝑇) = sup({𝑚 ∣ ∃𝑥 ∈ ℋ ((normℎ‘𝑥) ≤ 1 ∧ 𝑚 = (𝑁‘(𝑇‘𝑥)))}, ℝ*, < ) & ⊢ (𝑥 ∈ ℋ → (𝑁‘(𝑇‘𝑥)) ∈ ℝ) & ⊢ (𝑁‘(𝑇‘0ℎ)) = 0 & ⊢ (((𝑦 / 2) ∈ ℝ+ ∧ 𝑥 ∈ ℋ) → ((𝑦 / 2) · (𝑁‘(𝑇‘𝑥))) = (𝑁‘(𝑇‘((𝑦 / 2) ·ℎ 𝑥)))) ⇒ ⊢ (𝑆‘𝑇) ∈ ℝ | ||
| Theorem | nmcopexi 31956 | The norm of a continuous linear Hilbert space operator exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by NM, 5-Feb-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp & ⊢ 𝑇 ∈ ContOp ⇒ ⊢ (normop‘𝑇) ∈ ℝ | ||
| Theorem | nmcoplbi 31957 | A lower bound for the norm of a continuous linear operator. Theorem 3.5(ii) of [Beran] p. 99. (Contributed by NM, 7-Feb-2006.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp & ⊢ 𝑇 ∈ ContOp ⇒ ⊢ (𝐴 ∈ ℋ → (normℎ‘(𝑇‘𝐴)) ≤ ((normop‘𝑇) · (normℎ‘𝐴))) | ||
| Theorem | nmcopex 31958 | The norm of a continuous linear Hilbert space operator exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp) → (normop‘𝑇) ∈ ℝ) | ||
| Theorem | nmcoplb 31959 | A lower bound for the norm of a continuous linear Hilbert space operator. Theorem 3.5(ii) of [Beran] p. 99. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp ∧ 𝐴 ∈ ℋ) → (normℎ‘(𝑇‘𝐴)) ≤ ((normop‘𝑇) · (normℎ‘𝐴))) | ||
| Theorem | nmophmi 31960 | The norm of the scalar product of a bounded linear operator. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ BndLinOp ⇒ ⊢ (𝐴 ∈ ℂ → (normop‘(𝐴 ·op 𝑇)) = ((abs‘𝐴) · (normop‘𝑇))) | ||
| Theorem | bdophmi 31961 | The scalar product of a bounded linear operator is a bounded linear operator. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ BndLinOp ⇒ ⊢ (𝐴 ∈ ℂ → (𝐴 ·op 𝑇) ∈ BndLinOp) | ||
| Theorem | lnconi 31962* | Lemma for lnopconi 31963 and lnfnconi 31984. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ 𝐶 → 𝑆 ∈ ℝ) & ⊢ ((𝑇 ∈ 𝐶 ∧ 𝑦 ∈ ℋ) → (𝑁‘(𝑇‘𝑦)) ≤ (𝑆 · (normℎ‘𝑦))) & ⊢ (𝑇 ∈ 𝐶 ↔ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℝ+ ∃𝑦 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑦 → (𝑁‘((𝑇‘𝑤)𝑀(𝑇‘𝑥))) < 𝑧)) & ⊢ (𝑦 ∈ ℋ → (𝑁‘(𝑇‘𝑦)) ∈ ℝ) & ⊢ ((𝑤 ∈ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇‘(𝑤 −ℎ 𝑥)) = ((𝑇‘𝑤)𝑀(𝑇‘𝑥))) ⇒ ⊢ (𝑇 ∈ 𝐶 ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (𝑁‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦))) | ||
| Theorem | lnopconi 31963* | A condition equivalent to "𝑇 is continuous" when 𝑇 is linear. Theorem 3.5(iii) of [Beran] p. 99. (Contributed by NM, 7-Feb-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp ⇒ ⊢ (𝑇 ∈ ContOp ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (normℎ‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦))) | ||
| Theorem | lnopcon 31964* | A condition equivalent to "𝑇 is continuous" when 𝑇 is linear. Theorem 3.5(iii) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ LinOp → (𝑇 ∈ ContOp ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (normℎ‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦)))) | ||
| Theorem | lnopcnbd 31965 | A linear operator is continuous iff it is bounded. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ LinOp → (𝑇 ∈ ContOp ↔ 𝑇 ∈ BndLinOp)) | ||
| Theorem | lncnopbd 31966 | A continuous linear operator is a bounded linear operator. This theorem justifies our use of "bounded linear" as an interchangeable condition for "continuous linear" used in some textbook proofs. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ (LinOp ∩ ContOp) ↔ 𝑇 ∈ BndLinOp) | ||
| Theorem | lncnbd 31967 | A continuous linear operator is a bounded linear operator. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
| ⊢ (LinOp ∩ ContOp) = BndLinOp | ||
| Theorem | lnopcnre 31968 | A linear operator is continuous iff it is bounded. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ LinOp → (𝑇 ∈ ContOp ↔ (normop‘𝑇) ∈ ℝ)) | ||
| Theorem | lnfnli 31969 | Basic property of a linear Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinFn ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 𝐶)) = ((𝐴 · (𝑇‘𝐵)) + (𝑇‘𝐶))) | ||
| Theorem | lnfnfi 31970 | A linear Hilbert space functional is a functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinFn ⇒ ⊢ 𝑇: ℋ⟶ℂ | ||
| Theorem | lnfn0i 31971 | The value of a linear Hilbert space functional at zero is zero. Remark in [Beran] p. 99. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinFn ⇒ ⊢ (𝑇‘0ℎ) = 0 | ||
| Theorem | lnfnaddi 31972 | Additive property of a linear Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinFn ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 +ℎ 𝐵)) = ((𝑇‘𝐴) + (𝑇‘𝐵))) | ||
| Theorem | lnfnmuli 31973 | Multiplicative property of a linear Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinFn ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 ·ℎ 𝐵)) = (𝐴 · (𝑇‘𝐵))) | ||
| Theorem | lnfnaddmuli 31974 | Sum/product property of a linear Hilbert space functional. (Contributed by NM, 13-Feb-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinFn ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝑇‘(𝐵 +ℎ (𝐴 ·ℎ 𝐶))) = ((𝑇‘𝐵) + (𝐴 · (𝑇‘𝐶)))) | ||
| Theorem | lnfnsubi 31975 | Subtraction property for a linear Hilbert space functional. (Contributed by NM, 13-Feb-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinFn ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 −ℎ 𝐵)) = ((𝑇‘𝐴) − (𝑇‘𝐵))) | ||
| Theorem | lnfn0 31976 | The value of a linear Hilbert space functional at zero is zero. Remark in [Beran] p. 99. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ LinFn → (𝑇‘0ℎ) = 0) | ||
| Theorem | lnfnmul 31977 | Multiplicative property of a linear Hilbert space functional. (Contributed by NM, 30-May-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ LinFn ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 ·ℎ 𝐵)) = (𝐴 · (𝑇‘𝐵))) | ||
| Theorem | nmbdfnlbi 31978 | A lower bound for the norm of a bounded linear functional. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ LinFn ∧ (normfn‘𝑇) ∈ ℝ) ⇒ ⊢ (𝐴 ∈ ℋ → (abs‘(𝑇‘𝐴)) ≤ ((normfn‘𝑇) · (normℎ‘𝐴))) | ||
| Theorem | nmbdfnlb 31979 | A lower bound for the norm of a bounded linear functional. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ LinFn ∧ (normfn‘𝑇) ∈ ℝ ∧ 𝐴 ∈ ℋ) → (abs‘(𝑇‘𝐴)) ≤ ((normfn‘𝑇) · (normℎ‘𝐴))) | ||
| Theorem | nmcfnexi 31980 | The norm of a continuous linear Hilbert space functional exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinFn & ⊢ 𝑇 ∈ ContFn ⇒ ⊢ (normfn‘𝑇) ∈ ℝ | ||
| Theorem | nmcfnlbi 31981 | A lower bound for the norm of a continuous linear functional. Theorem 3.5(ii) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinFn & ⊢ 𝑇 ∈ ContFn ⇒ ⊢ (𝐴 ∈ ℋ → (abs‘(𝑇‘𝐴)) ≤ ((normfn‘𝑇) · (normℎ‘𝐴))) | ||
| Theorem | nmcfnex 31982 | The norm of a continuous linear Hilbert space functional exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn) → (normfn‘𝑇) ∈ ℝ) | ||
| Theorem | nmcfnlb 31983 | A lower bound of the norm of a continuous linear Hilbert space functional. Theorem 3.5(ii) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn ∧ 𝐴 ∈ ℋ) → (abs‘(𝑇‘𝐴)) ≤ ((normfn‘𝑇) · (normℎ‘𝐴))) | ||
| Theorem | lnfnconi 31984* | A condition equivalent to "𝑇 is continuous" when 𝑇 is linear. Theorem 3.5(iii) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinFn ⇒ ⊢ (𝑇 ∈ ContFn ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (abs‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦))) | ||
| Theorem | lnfncon 31985* | A condition equivalent to "𝑇 is continuous" when 𝑇 is linear. Theorem 3.5(iii) of [Beran] p. 99. (Contributed by NM, 16-Feb-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ LinFn → (𝑇 ∈ ContFn ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (abs‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦)))) | ||
| Theorem | lnfncnbd 31986 | A linear functional is continuous iff it is bounded. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ LinFn → (𝑇 ∈ ContFn ↔ (normfn‘𝑇) ∈ ℝ)) | ||
| Theorem | imaelshi 31987 | The image of a subspace under a linear operator is a subspace. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp & ⊢ 𝐴 ∈ Sℋ ⇒ ⊢ (𝑇 “ 𝐴) ∈ Sℋ | ||
| Theorem | rnelshi 31988 | The range of a linear operator is a subspace. (Contributed by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp ⇒ ⊢ ran 𝑇 ∈ Sℋ | ||
| Theorem | nlelshi 31989 | The null space of a linear functional is a subspace. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinFn ⇒ ⊢ (null‘𝑇) ∈ Sℋ | ||
| Theorem | nlelchi 31990 | The null space of a continuous linear functional is a closed subspace. Remark 3.8 of [Beran] p. 103. (Contributed by NM, 11-Feb-2006.) (Proof shortened by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinFn & ⊢ 𝑇 ∈ ContFn ⇒ ⊢ (null‘𝑇) ∈ Cℋ | ||
| Theorem | riesz3i 31991* | A continuous linear functional can be expressed as an inner product. Existence part of Theorem 3.9 of [Beran] p. 104. (Contributed by NM, 13-Feb-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinFn & ⊢ 𝑇 ∈ ContFn ⇒ ⊢ ∃𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤) | ||
| Theorem | riesz4i 31992* | A continuous linear functional can be expressed as an inner product. Uniqueness part of Theorem 3.9 of [Beran] p. 104. (Contributed by NM, 13-Feb-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinFn & ⊢ 𝑇 ∈ ContFn ⇒ ⊢ ∃!𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤) | ||
| Theorem | riesz4 31993* | A continuous linear functional can be expressed as an inner product. Uniqueness part of Theorem 3.9 of [Beran] p. 104. See riesz2 31995 for the bounded linear functional version. (Contributed by NM, 16-Feb-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ (LinFn ∩ ContFn) → ∃!𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇‘𝑣) = (𝑣 ·ih 𝑤)) | ||
| Theorem | riesz1 31994* | Part 1 of the Riesz representation theorem for bounded linear functionals. A linear functional is bounded iff its value can be expressed as an inner product. Part of Theorem 17.3 of [Halmos] p. 31. For part 2, see riesz2 31995. For the continuous linear functional version, see riesz3i 31991 and riesz4 31993. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.) |
| ⊢ (𝑇 ∈ LinFn → ((normfn‘𝑇) ∈ ℝ ↔ ∃𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦))) | ||
| Theorem | riesz2 31995* | Part 2 of the Riesz representation theorem for bounded linear functionals. The value of a bounded linear functional corresponds to a unique inner product. Part of Theorem 17.3 of [Halmos] p. 31. For part 1, see riesz1 31994. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.) |
| ⊢ ((𝑇 ∈ LinFn ∧ (normfn‘𝑇) ∈ ℝ) → ∃!𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑇‘𝑥) = (𝑥 ·ih 𝑦)) | ||
| Theorem | cnlnadjlem1 31996* | Lemma for cnlnadji 32005 (Theorem 3.10 of [Beran] p. 104: every continuous linear operator has an adjoint). The value of the auxiliary functional 𝐺. (Contributed by NM, 16-Feb-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp & ⊢ 𝑇 ∈ ContOp & ⊢ 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇‘𝑔) ·ih 𝑦)) ⇒ ⊢ (𝐴 ∈ ℋ → (𝐺‘𝐴) = ((𝑇‘𝐴) ·ih 𝑦)) | ||
| Theorem | cnlnadjlem2 31997* | Lemma for cnlnadji 32005. 𝐺 is a continuous linear functional. (Contributed by NM, 16-Feb-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp & ⊢ 𝑇 ∈ ContOp & ⊢ 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇‘𝑔) ·ih 𝑦)) ⇒ ⊢ (𝑦 ∈ ℋ → (𝐺 ∈ LinFn ∧ 𝐺 ∈ ContFn)) | ||
| Theorem | cnlnadjlem3 31998* | Lemma for cnlnadji 32005. By riesz4 31993, 𝐵 is the unique vector such that (𝑇‘𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤) for all 𝑣. (Contributed by NM, 17-Feb-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp & ⊢ 𝑇 ∈ ContOp & ⊢ 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇‘𝑔) ·ih 𝑦)) & ⊢ 𝐵 = (℩𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤)) ⇒ ⊢ (𝑦 ∈ ℋ → 𝐵 ∈ ℋ) | ||
| Theorem | cnlnadjlem4 31999* | Lemma for cnlnadji 32005. The values of auxiliary function 𝐹 are vectors. (Contributed by NM, 17-Feb-2006.) (Proof shortened by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp & ⊢ 𝑇 ∈ ContOp & ⊢ 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇‘𝑔) ·ih 𝑦)) & ⊢ 𝐵 = (℩𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤)) & ⊢ 𝐹 = (𝑦 ∈ ℋ ↦ 𝐵) ⇒ ⊢ (𝐴 ∈ ℋ → (𝐹‘𝐴) ∈ ℋ) | ||
| Theorem | cnlnadjlem5 32000* | Lemma for cnlnadji 32005. 𝐹 is an adjoint of 𝑇 (later, we will show it is unique). (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
| ⊢ 𝑇 ∈ LinOp & ⊢ 𝑇 ∈ ContOp & ⊢ 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇‘𝑔) ·ih 𝑦)) & ⊢ 𝐵 = (℩𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤)) & ⊢ 𝐹 = (𝑦 ∈ ℋ ↦ 𝐵) ⇒ ⊢ ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝑇‘𝐶) ·ih 𝐴) = (𝐶 ·ih (𝐹‘𝐴))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |