| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordi | Structured version Visualization version GIF version | ||
| Description: Distributive law for disjunction. Theorem *4.41 of [WhiteheadRussell] p. 119. (Contributed by NM, 5-Jan-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 28-Nov-2013.) |
| Ref | Expression |
|---|---|
| ordi | ⊢ ((𝜑 ∨ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jcab 517 | . 2 ⊢ ((¬ 𝜑 → (𝜓 ∧ 𝜒)) ↔ ((¬ 𝜑 → 𝜓) ∧ (¬ 𝜑 → 𝜒))) | |
| 2 | df-or 849 | . 2 ⊢ ((𝜑 ∨ (𝜓 ∧ 𝜒)) ↔ (¬ 𝜑 → (𝜓 ∧ 𝜒))) | |
| 3 | df-or 849 | . . 3 ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) | |
| 4 | df-or 849 | . . 3 ⊢ ((𝜑 ∨ 𝜒) ↔ (¬ 𝜑 → 𝜒)) | |
| 5 | 3, 4 | anbi12i 628 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒)) ↔ ((¬ 𝜑 → 𝜓) ∧ (¬ 𝜑 → 𝜒))) |
| 6 | 1, 2, 5 | 3bitr4i 303 | 1 ⊢ ((𝜑 ∨ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 |
| This theorem is referenced by: ordir 1009 orddi 1012 pm5.63 1022 pm4.43 1025 cadan 1609 undi 4285 undif3 4300 undif4 4467 poxp2 8168 elnn1uz2 12967 or3di 32478 wl-df3-3mintru2 37487 ifpan23 43473 ifpidg 43504 ifpim123g 43513 |
| Copyright terms: Public domain | W3C validator |