Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordi Structured version   Visualization version   GIF version

Theorem ordi 1003
 Description: Distributive law for disjunction. Theorem *4.41 of [WhiteheadRussell] p. 119. (Contributed by NM, 5-Jan-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 28-Nov-2013.)
Assertion
Ref Expression
ordi ((𝜑 ∨ (𝜓𝜒)) ↔ ((𝜑𝜓) ∧ (𝜑𝜒)))

Proof of Theorem ordi
StepHypRef Expression
1 jcab 521 . 2 ((¬ 𝜑 → (𝜓𝜒)) ↔ ((¬ 𝜑𝜓) ∧ (¬ 𝜑𝜒)))
2 df-or 845 . 2 ((𝜑 ∨ (𝜓𝜒)) ↔ (¬ 𝜑 → (𝜓𝜒)))
3 df-or 845 . . 3 ((𝜑𝜓) ↔ (¬ 𝜑𝜓))
4 df-or 845 . . 3 ((𝜑𝜒) ↔ (¬ 𝜑𝜒))
53, 4anbi12i 629 . 2 (((𝜑𝜓) ∧ (𝜑𝜒)) ↔ ((¬ 𝜑𝜓) ∧ (¬ 𝜑𝜒)))
61, 2, 53bitr4i 306 1 ((𝜑 ∨ (𝜓𝜒)) ↔ ((𝜑𝜓) ∧ (𝜑𝜒)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845 This theorem is referenced by:  ordir  1004  orddi  1007  pm5.63  1017  pm4.43  1020  cadan  1611  undi  4204  undif3  4218  undif4  4377  elnn1uz2  12317  or3di  30235  wl-df3-3mintru2  34902  ifpan23  40161  ifpidg  40192  ifpim123g  40201
 Copyright terms: Public domain W3C validator