| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > or3dir | Structured version Visualization version GIF version | ||
| Description: Distributive law for disjunction. (Contributed by Thierry Arnoux, 3-Jul-2017.) |
| Ref | Expression |
|---|---|
| or3dir | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∨ 𝜏) ↔ ((𝜑 ∨ 𝜏) ∧ (𝜓 ∨ 𝜏) ∧ (𝜒 ∨ 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | or3di 32478 | . 2 ⊢ ((𝜏 ∨ (𝜑 ∧ 𝜓 ∧ 𝜒)) ↔ ((𝜏 ∨ 𝜑) ∧ (𝜏 ∨ 𝜓) ∧ (𝜏 ∨ 𝜒))) | |
| 2 | orcom 871 | . 2 ⊢ ((𝜏 ∨ (𝜑 ∧ 𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∨ 𝜏)) | |
| 3 | orcom 871 | . . 3 ⊢ ((𝜏 ∨ 𝜑) ↔ (𝜑 ∨ 𝜏)) | |
| 4 | orcom 871 | . . 3 ⊢ ((𝜏 ∨ 𝜓) ↔ (𝜓 ∨ 𝜏)) | |
| 5 | orcom 871 | . . 3 ⊢ ((𝜏 ∨ 𝜒) ↔ (𝜒 ∨ 𝜏)) | |
| 6 | 3, 4, 5 | 3anbi123i 1156 | . 2 ⊢ (((𝜏 ∨ 𝜑) ∧ (𝜏 ∨ 𝜓) ∧ (𝜏 ∨ 𝜒)) ↔ ((𝜑 ∨ 𝜏) ∧ (𝜓 ∨ 𝜏) ∧ (𝜒 ∨ 𝜏))) |
| 7 | 1, 2, 6 | 3bitr3i 301 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∨ 𝜏) ↔ ((𝜑 ∨ 𝜏) ∧ (𝜓 ∨ 𝜏) ∧ (𝜒 ∨ 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 848 ∧ w3a 1087 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |