Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  or3dir Structured version   Visualization version   GIF version

Theorem or3dir 30331
Description: Distributive law for disjunction. (Contributed by Thierry Arnoux, 3-Jul-2017.)
Assertion
Ref Expression
or3dir (((𝜑𝜓𝜒) ∨ 𝜏) ↔ ((𝜑𝜏) ∧ (𝜓𝜏) ∧ (𝜒𝜏)))

Proof of Theorem or3dir
StepHypRef Expression
1 or3di 30330 . 2 ((𝜏 ∨ (𝜑𝜓𝜒)) ↔ ((𝜏𝜑) ∧ (𝜏𝜓) ∧ (𝜏𝜒)))
2 orcom 867 . 2 ((𝜏 ∨ (𝜑𝜓𝜒)) ↔ ((𝜑𝜓𝜒) ∨ 𝜏))
3 orcom 867 . . 3 ((𝜏𝜑) ↔ (𝜑𝜏))
4 orcom 867 . . 3 ((𝜏𝜓) ↔ (𝜓𝜏))
5 orcom 867 . . 3 ((𝜏𝜒) ↔ (𝜒𝜏))
63, 4, 53anbi123i 1152 . 2 (((𝜏𝜑) ∧ (𝜏𝜓) ∧ (𝜏𝜒)) ↔ ((𝜑𝜏) ∧ (𝜓𝜏) ∧ (𝜒𝜏)))
71, 2, 63bitr3i 304 1 (((𝜑𝜓𝜒) ∨ 𝜏) ↔ ((𝜑𝜏) ∧ (𝜓𝜏) ∧ (𝜒𝜏)))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wo 844  w3a 1084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator