MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  or42 Structured version   Visualization version   GIF version

Theorem or42 925
Description: Rearrangement of 4 disjuncts. (Contributed by NM, 10-Jan-2005.)
Assertion
Ref Expression
or42 (((𝜑𝜓) ∨ (𝜒𝜃)) ↔ ((𝜑𝜒) ∨ (𝜃𝜓)))

Proof of Theorem or42
StepHypRef Expression
1 or4 924 . 2 (((𝜑𝜓) ∨ (𝜒𝜃)) ↔ ((𝜑𝜒) ∨ (𝜓𝜃)))
2 orcom 867 . . 3 ((𝜓𝜃) ↔ (𝜃𝜓))
32orbi2i 910 . 2 (((𝜑𝜒) ∨ (𝜓𝜃)) ↔ ((𝜑𝜒) ∨ (𝜃𝜓)))
41, 3bitri 274 1 (((𝜑𝜓) ∨ (𝜒𝜃)) ↔ ((𝜑𝜒) ∨ (𝜃𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wo 844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 845
This theorem is referenced by:  clsk1indlem3  41653
  Copyright terms: Public domain W3C validator