Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > or42 | Structured version Visualization version GIF version |
Description: Rearrangement of 4 disjuncts. (Contributed by NM, 10-Jan-2005.) |
Ref | Expression |
---|---|
or42 | ⊢ (((𝜑 ∨ 𝜓) ∨ (𝜒 ∨ 𝜃)) ↔ ((𝜑 ∨ 𝜒) ∨ (𝜃 ∨ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | or4 923 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∨ (𝜒 ∨ 𝜃)) ↔ ((𝜑 ∨ 𝜒) ∨ (𝜓 ∨ 𝜃))) | |
2 | orcom 866 | . . 3 ⊢ ((𝜓 ∨ 𝜃) ↔ (𝜃 ∨ 𝜓)) | |
3 | 2 | orbi2i 909 | . 2 ⊢ (((𝜑 ∨ 𝜒) ∨ (𝜓 ∨ 𝜃)) ↔ ((𝜑 ∨ 𝜒) ∨ (𝜃 ∨ 𝜓))) |
4 | 1, 3 | bitri 274 | 1 ⊢ (((𝜑 ∨ 𝜓) ∨ (𝜒 ∨ 𝜃)) ↔ ((𝜑 ∨ 𝜒) ∨ (𝜃 ∨ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 |
This theorem is referenced by: clsk1indlem3 41542 |
Copyright terms: Public domain | W3C validator |