| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > or4 | Structured version Visualization version GIF version | ||
| Description: Rearrangement of 4 disjuncts. (Contributed by NM, 12-Aug-1994.) |
| Ref | Expression |
|---|---|
| or4 | ⊢ (((𝜑 ∨ 𝜓) ∨ (𝜒 ∨ 𝜃)) ↔ ((𝜑 ∨ 𝜒) ∨ (𝜓 ∨ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | or12 921 | . . 3 ⊢ ((𝜓 ∨ (𝜒 ∨ 𝜃)) ↔ (𝜒 ∨ (𝜓 ∨ 𝜃))) | |
| 2 | 1 | orbi2i 913 | . 2 ⊢ ((𝜑 ∨ (𝜓 ∨ (𝜒 ∨ 𝜃))) ↔ (𝜑 ∨ (𝜒 ∨ (𝜓 ∨ 𝜃)))) |
| 3 | orass 922 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∨ (𝜒 ∨ 𝜃)) ↔ (𝜑 ∨ (𝜓 ∨ (𝜒 ∨ 𝜃)))) | |
| 4 | orass 922 | . 2 ⊢ (((𝜑 ∨ 𝜒) ∨ (𝜓 ∨ 𝜃)) ↔ (𝜑 ∨ (𝜒 ∨ (𝜓 ∨ 𝜃)))) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ (((𝜑 ∨ 𝜓) ∨ (𝜒 ∨ 𝜃)) ↔ ((𝜑 ∨ 𝜒) ∨ (𝜓 ∨ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 849 |
| This theorem is referenced by: or42 928 orordi 929 orordir 930 3or6 1449 swoer 8776 xmullem2 13307 swrdnnn0nd 14694 clsk1indlem3 44056 |
| Copyright terms: Public domain | W3C validator |