MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orordi Structured version   Visualization version   GIF version

Theorem orordi 925
Description: Distribution of disjunction over disjunction. (Contributed by NM, 25-Feb-1995.)
Assertion
Ref Expression
orordi ((𝜑 ∨ (𝜓𝜒)) ↔ ((𝜑𝜓) ∨ (𝜑𝜒)))

Proof of Theorem orordi
StepHypRef Expression
1 oridm 901 . . 3 ((𝜑𝜑) ↔ 𝜑)
21orbi1i 910 . 2 (((𝜑𝜑) ∨ (𝜓𝜒)) ↔ (𝜑 ∨ (𝜓𝜒)))
3 or4 923 . 2 (((𝜑𝜑) ∨ (𝜓𝜒)) ↔ ((𝜑𝜓) ∨ (𝜑𝜒)))
42, 3bitr3i 276 1 ((𝜑 ∨ (𝜓𝜒)) ↔ ((𝜑𝜓) ∨ (𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wo 843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 844
This theorem is referenced by:  pm4.78  931
  Copyright terms: Public domain W3C validator