Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm5.7 | Structured version Visualization version GIF version |
Description: Disjunction distributes over the biconditional. Theorem *5.7 of [WhiteheadRussell] p. 125. This theorem is similar to orbidi 949. (Contributed by Roy F. Longton, 21-Jun-2005.) |
Ref | Expression |
---|---|
pm5.7 | ⊢ (((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒)) ↔ (𝜒 ∨ (𝜑 ↔ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orbidi 949 | . 2 ⊢ ((𝜒 ∨ (𝜑 ↔ 𝜓)) ↔ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓))) | |
2 | orcom 866 | . . 3 ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜑 ∨ 𝜒)) | |
3 | orcom 866 | . . 3 ⊢ ((𝜒 ∨ 𝜓) ↔ (𝜓 ∨ 𝜒)) | |
4 | 2, 3 | bibi12i 339 | . 2 ⊢ (((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) ↔ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒))) |
5 | 1, 4 | bitr2i 275 | 1 ⊢ (((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒)) ↔ (𝜒 ∨ (𝜑 ↔ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |