| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.7 | Structured version Visualization version GIF version | ||
| Description: Disjunction distributes over the biconditional. Theorem *5.7 of [WhiteheadRussell] p. 125. This theorem is similar to orbidi 955. (Contributed by Roy F. Longton, 21-Jun-2005.) |
| Ref | Expression |
|---|---|
| pm5.7 | ⊢ (((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒)) ↔ (𝜒 ∨ (𝜑 ↔ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orbidi 955 | . 2 ⊢ ((𝜒 ∨ (𝜑 ↔ 𝜓)) ↔ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓))) | |
| 2 | orcom 871 | . . 3 ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜑 ∨ 𝜒)) | |
| 3 | orcom 871 | . . 3 ⊢ ((𝜒 ∨ 𝜓) ↔ (𝜓 ∨ 𝜒)) | |
| 4 | 2, 3 | bibi12i 339 | . 2 ⊢ (((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) ↔ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒))) |
| 5 | 1, 4 | bitr2i 276 | 1 ⊢ (((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒)) ↔ (𝜒 ∨ (𝜑 ↔ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 849 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |