Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > orfa2 | Structured version Visualization version GIF version |
Description: Remove a contradicting disjunct from an antecedent. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
Ref | Expression |
---|---|
orfa2.1 | ⊢ (𝜑 → ⊥) |
Ref | Expression |
---|---|
orfa2 | ⊢ ((𝜑 ∨ 𝜓) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orfa2.1 | . . 3 ⊢ (𝜑 → ⊥) | |
2 | 1 | orim1i 906 | . 2 ⊢ ((𝜑 ∨ 𝜓) → (⊥ ∨ 𝜓)) |
3 | falim 1556 | . . 3 ⊢ (⊥ → 𝜓) | |
4 | id 22 | . . 3 ⊢ (𝜓 → 𝜓) | |
5 | 3, 4 | jaoi 853 | . 2 ⊢ ((⊥ ∨ 𝜓) → 𝜓) |
6 | 2, 5 | syl 17 | 1 ⊢ ((𝜑 ∨ 𝜓) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 843 ⊥wfal 1551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 df-tru 1542 df-fal 1552 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |