Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orfa2 Structured version   Visualization version   GIF version

Theorem orfa2 36171
Description: Remove a contradicting disjunct from an antecedent. (Contributed by Giovanni Mascellani, 15-Sep-2017.)
Hypothesis
Ref Expression
orfa2.1 (𝜑 → ⊥)
Assertion
Ref Expression
orfa2 ((𝜑𝜓) → 𝜓)

Proof of Theorem orfa2
StepHypRef Expression
1 orfa2.1 . . 3 (𝜑 → ⊥)
21orim1i 906 . 2 ((𝜑𝜓) → (⊥ ∨ 𝜓))
3 falim 1556 . . 3 (⊥ → 𝜓)
4 id 22 . . 3 (𝜓𝜓)
53, 4jaoi 853 . 2 ((⊥ ∨ 𝜓) → 𝜓)
62, 5syl 17 1 ((𝜑𝜓) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 843  wfal 1551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 844  df-tru 1542  df-fal 1552
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator