Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > orim1i | Structured version Visualization version GIF version |
Description: Introduce disjunct to both sides of an implication. (Contributed by NM, 6-Jun-1994.) |
Ref | Expression |
---|---|
orim1i.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
orim1i | ⊢ ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orim1i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | id 22 | . 2 ⊢ (𝜒 → 𝜒) | |
3 | 1, 2 | orim12i 905 | 1 ⊢ ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 |
This theorem is referenced by: 19.34 1991 r19.45v 3279 nnm1nn0 12204 elfzo0l 13405 xrge0iifhom 31789 fmla1 33249 bj-andnotim 34697 orfa2 36171 expdioph 40761 ifpimim 41014 simpcntrab 44273 |
Copyright terms: Public domain | W3C validator |