MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orim1i Structured version   Visualization version   GIF version

Theorem orim1i 907
Description: Introduce disjunct to both sides of an implication. (Contributed by NM, 6-Jun-1994.)
Hypothesis
Ref Expression
orim1i.1 (𝜑𝜓)
Assertion
Ref Expression
orim1i ((𝜑𝜒) → (𝜓𝜒))

Proof of Theorem orim1i
StepHypRef Expression
1 orim1i.1 . 2 (𝜑𝜓)
2 id 22 . 2 (𝜒𝜒)
31, 2orim12i 906 1 ((𝜑𝜒) → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 845
This theorem is referenced by:  19.34  1990  r19.45v  3282  nnm1nn0  12274  elfzo0l  13477  xrge0iifhom  31887  fmla1  33349  bj-andnotim  34770  orfa2  36244  expdioph  40845  ifpimim  41116  simpcntrab  44386
  Copyright terms: Public domain W3C validator