| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pm10.14 | Structured version Visualization version GIF version | ||
| Description: Theorem *10.14 in [WhiteheadRussell] p. 146. (Contributed by Andrew Salmon, 17-Jun-2011.) |
| Ref | Expression |
|---|---|
| pm10.14 | ⊢ ((∀𝑥𝜑 ∧ ∀𝑥𝜓) → ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stdpc4 2067 | . 2 ⊢ (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) | |
| 2 | stdpc4 2067 | . 2 ⊢ (∀𝑥𝜓 → [𝑦 / 𝑥]𝜓) | |
| 3 | 1, 2 | anim12i 613 | 1 ⊢ ((∀𝑥𝜑 ∧ ∀𝑥𝜓) → ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 [wsb 2063 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-sb 2064 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |