Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > anim12i | Structured version Visualization version GIF version |
Description: Conjoin antecedents and consequents of two premises. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Wolf Lammen, 14-Dec-2013.) |
Ref | Expression |
---|---|
anim12i.1 | ⊢ (𝜑 → 𝜓) |
anim12i.2 | ⊢ (𝜒 → 𝜃) |
Ref | Expression |
---|---|
anim12i | ⊢ ((𝜑 ∧ 𝜒) → (𝜓 ∧ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anim12i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | anim12i.2 | . 2 ⊢ (𝜒 → 𝜃) | |
3 | id 22 | . 2 ⊢ ((𝜓 ∧ 𝜃) → (𝜓 ∧ 𝜃)) | |
4 | 1, 2, 3 | syl2an 595 | 1 ⊢ ((𝜑 ∧ 𝜒) → (𝜓 ∧ 𝜃)) |
Copyright terms: Public domain | W3C validator |