![]() |
Metamath
Proof Explorer Theorem List (p. 435 of 481) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30640) |
![]() (30641-32163) |
![]() (32164-48040) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | imadisjlnd 43401 | Natural deduction form of one negated side of imadisj 6069. (Contributed by Stanislas Polu, 9-Mar-2020.) |
β’ (π β (dom π΄ β© π΅) β β ) β β’ (π β (π΄ β π΅) β β ) | ||
Theorem | wnefimgd 43402 | The image of a mapping from A is nonempty if A is nonempty. (Contributed by Stanislas Polu, 9-Mar-2020.) |
β’ (π β π΄ β β ) & β’ (π β πΉ:π΄βΆπ΅) β β’ (π β (πΉ β π΄) β β ) | ||
Theorem | fco2d 43403 | Natural deduction form of fco2 6734. (Contributed by Stanislas Polu, 9-Mar-2020.) |
β’ (π β πΊ:π΄βΆπ΅) & β’ (π β (πΉ βΎ π΅):π΅βΆπΆ) β β’ (π β (πΉ β πΊ):π΄βΆπΆ) | ||
Theorem | wfximgfd 43404 | The value of a function on its domain is in the image of the function. (Contributed by Stanislas Polu, 9-Mar-2020.) |
β’ (π β πΆ β π΄) & β’ (π β πΉ:π΄βΆπ΅) β β’ (π β (πΉβπΆ) β (πΉ β π΄)) | ||
Theorem | extoimad 43405* | If |f(x)| <= C for all x then it applies to all x in the image of |f(x)| (Contributed by Stanislas Polu, 9-Mar-2020.) |
β’ (π β πΉ:ββΆβ) & β’ (π β βπ¦ β β (absβ(πΉβπ¦)) β€ πΆ) β β’ (π β βπ₯ β (abs β (πΉ β β))π₯ β€ πΆ) | ||
Theorem | imo72b2lem0 43406* | Lemma for imo72b2 43413. (Contributed by Stanislas Polu, 9-Mar-2020.) |
β’ (π β πΉ:ββΆβ) & β’ (π β πΊ:ββΆβ) & β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β ((πΉβ(π΄ + π΅)) + (πΉβ(π΄ β π΅))) = (2 Β· ((πΉβπ΄) Β· (πΊβπ΅)))) & β’ (π β βπ¦ β β (absβ(πΉβπ¦)) β€ 1) β β’ (π β ((absβ(πΉβπ΄)) Β· (absβ(πΊβπ΅))) β€ sup((abs β (πΉ β β)), β, < )) | ||
Theorem | suprleubrd 43407* | Natural deduction form of specialized suprleub 12177. (Contributed by Stanislas Polu, 9-Mar-2020.) |
β’ (π β π΄ β β) & β’ (π β π΄ β β ) & β’ (π β βπ₯ β β βπ¦ β π΄ π¦ β€ π₯) & β’ (π β π΅ β β) & β’ (π β βπ§ β π΄ π§ β€ π΅) β β’ (π β sup(π΄, β, < ) β€ π΅) | ||
Theorem | imo72b2lem2 43408* | Lemma for imo72b2 43413. (Contributed by Stanislas Polu, 9-Mar-2020.) |
β’ (π β πΉ:ββΆβ) & β’ (π β πΆ β β) & β’ (π β βπ§ β β (absβ(πΉβπ§)) β€ πΆ) β β’ (π β sup((abs β (πΉ β β)), β, < ) β€ πΆ) | ||
Theorem | suprlubrd 43409* | Natural deduction form of specialized suprlub 12175. (Contributed by Stanislas Polu, 9-Mar-2020.) |
β’ (π β π΄ β β) & β’ (π β π΄ β β ) & β’ (π β βπ₯ β β βπ¦ β π΄ π¦ β€ π₯) & β’ (π β π΅ β β) & β’ (π β βπ§ β π΄ π΅ < π§) β β’ (π β π΅ < sup(π΄, β, < )) | ||
Theorem | imo72b2lem1 43410* | Lemma for imo72b2 43413. (Contributed by Stanislas Polu, 9-Mar-2020.) |
β’ (π β πΉ:ββΆβ) & β’ (π β βπ₯ β β (πΉβπ₯) β 0) & β’ (π β βπ¦ β β (absβ(πΉβπ¦)) β€ 1) β β’ (π β 0 < sup((abs β (πΉ β β)), β, < )) | ||
Theorem | lemuldiv3d 43411 | 'Less than or equal to' relationship between division and multiplication. (Contributed by Stanislas Polu, 9-Mar-2020.) |
β’ (π β (π΅ Β· π΄) β€ πΆ) & β’ (π β 0 < π΄) & β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΆ β β) β β’ (π β π΅ β€ (πΆ / π΄)) | ||
Theorem | lemuldiv4d 43412 | 'Less than or equal to' relationship between division and multiplication. (Contributed by Stanislas Polu, 9-Mar-2020.) |
β’ (π β π΅ β€ (πΆ / π΄)) & β’ (π β 0 < π΄) & β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΆ β β) β β’ (π β (π΅ Β· π΄) β€ πΆ) | ||
Theorem | imo72b2 43413* | IMO 1972 B2. (14th International Mathematical Olympiad in Poland, problem B2). (Contributed by Stanislas Polu, 9-Mar-2020.) |
β’ (π β πΉ:ββΆβ) & β’ (π β πΊ:ββΆβ) & β’ (π β π΅ β β) & β’ (π β βπ’ β β βπ£ β β ((πΉβ(π’ + π£)) + (πΉβ(π’ β π£))) = (2 Β· ((πΉβπ’) Β· (πΊβπ£)))) & β’ (π β βπ¦ β β (absβ(πΉβπ¦)) β€ 1) & β’ (π β βπ₯ β β (πΉβπ₯) β 0) β β’ (π β (absβ(πΊβπ΅)) β€ 1) | ||
This section formalizes theorems necessary to reproduce the equality and inequality generator described in "Neural Theorem Proving on Inequality Problems" http://aitp-conference.org/2020/abstract/paper_18.pdf. Other theorems required: 0red 11214 1red 11212 readdcld 11240 remulcld 11241 eqcomd 2730. | ||
Theorem | int-addcomd 43414 | AdditionCommutativity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
β’ (π β π΅ β β) & β’ (π β πΆ β β) & β’ (π β π΄ = π΅) β β’ (π β (π΅ + πΆ) = (πΆ + π΄)) | ||
Theorem | int-addassocd 43415 | AdditionAssociativity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
β’ (π β π΄ β β) & β’ (π β πΆ β β) & β’ (π β π· β β) & β’ (π β π΄ = π΅) β β’ (π β (π΅ + (πΆ + π·)) = ((π΄ + πΆ) + π·)) | ||
Theorem | int-addsimpd 43416 | AdditionSimplification generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
β’ (π β π΄ β β) & β’ (π β π΄ = π΅) β β’ (π β 0 = (π΄ β π΅)) | ||
Theorem | int-mulcomd 43417 | MultiplicationCommutativity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
β’ (π β π΅ β β) & β’ (π β πΆ β β) & β’ (π β π΄ = π΅) β β’ (π β (π΅ Β· πΆ) = (πΆ Β· π΄)) | ||
Theorem | int-mulassocd 43418 | MultiplicationAssociativity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
β’ (π β π΅ β β) & β’ (π β πΆ β β) & β’ (π β π· β β) & β’ (π β π΄ = π΅) β β’ (π β (π΅ Β· (πΆ Β· π·)) = ((π΄ Β· πΆ) Β· π·)) | ||
Theorem | int-mulsimpd 43419 | MultiplicationSimplification generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
β’ (π β π΅ β β) & β’ (π β π΄ = π΅) & β’ (π β π΅ β 0) β β’ (π β 1 = (π΄ / π΅)) | ||
Theorem | int-leftdistd 43420 | AdditionMultiplicationLeftDistribution generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
β’ (π β π΅ β β) & β’ (π β πΆ β β) & β’ (π β π· β β) & β’ (π β π΄ = π΅) β β’ (π β ((πΆ + π·) Β· π΅) = ((πΆ Β· π΄) + (π· Β· π΄))) | ||
Theorem | int-rightdistd 43421 | AdditionMultiplicationRightDistribution generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
β’ (π β π΅ β β) & β’ (π β πΆ β β) & β’ (π β π· β β) & β’ (π β π΄ = π΅) β β’ (π β (π΅ Β· (πΆ + π·)) = ((π΄ Β· πΆ) + (π΄ Β· π·))) | ||
Theorem | int-sqdefd 43422 | SquareDefinition generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
β’ (π β π΅ β β) & β’ (π β π΄ = π΅) β β’ (π β (π΄ Β· π΅) = (π΄β2)) | ||
Theorem | int-mul11d 43423 | First MultiplicationOne generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
β’ (π β π΄ β β) & β’ (π β π΄ = π΅) β β’ (π β (π΄ Β· 1) = π΅) | ||
Theorem | int-mul12d 43424 | Second MultiplicationOne generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
β’ (π β π΄ β β) & β’ (π β π΄ = π΅) β β’ (π β (1 Β· π΄) = π΅) | ||
Theorem | int-add01d 43425 | First AdditionZero generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
β’ (π β π΄ β β) & β’ (π β π΄ = π΅) β β’ (π β (π΄ + 0) = π΅) | ||
Theorem | int-add02d 43426 | Second AdditionZero generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
β’ (π β π΄ β β) & β’ (π β π΄ = π΅) β β’ (π β (0 + π΄) = π΅) | ||
Theorem | int-sqgeq0d 43427 | SquareGEQZero generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ = π΅) β β’ (π β 0 β€ (π΄ Β· π΅)) | ||
Theorem | int-eqprincd 43428 | PrincipleOfEquality generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
β’ (π β π΄ = π΅) & β’ (π β πΆ = π·) β β’ (π β (π΄ + πΆ) = (π΅ + π·)) | ||
Theorem | int-eqtransd 43429 | EqualityTransitivity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
β’ (π β π΄ = π΅) & β’ (π β π΅ = πΆ) β β’ (π β π΄ = πΆ) | ||
Theorem | int-eqmvtd 43430 | EquMoveTerm generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
β’ (π β πΆ β β) & β’ (π β π· β β) & β’ (π β π΄ = π΅) & β’ (π β π΄ = (πΆ + π·)) β β’ (π β πΆ = (π΅ β π·)) | ||
Theorem | int-eqineqd 43431 | EquivalenceImpliesDoubleInequality generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
β’ (π β π΅ β β) & β’ (π β π΄ = π΅) β β’ (π β π΅ β€ π΄) | ||
Theorem | int-ineqmvtd 43432 | IneqMoveTerm generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
β’ (π β π΅ β β) & β’ (π β πΆ β β) & β’ (π β π· β β) & β’ (π β π΅ β€ π΄) & β’ (π β π΄ = (πΆ + π·)) β β’ (π β (π΅ β π·) β€ πΆ) | ||
Theorem | int-ineq1stprincd 43433 | FirstPrincipleOfInequality generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΆ β β) & β’ (π β π· β β) & β’ (π β π΅ β€ π΄) & β’ (π β π· β€ πΆ) β β’ (π β (π΅ + π·) β€ (π΄ + πΆ)) | ||
Theorem | int-ineq2ndprincd 43434 | SecondPrincipleOfInequality generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΆ β β) & β’ (π β π΅ β€ π΄) & β’ (π β 0 β€ πΆ) β β’ (π β (π΅ Β· πΆ) β€ (π΄ Β· πΆ)) | ||
Theorem | int-ineqtransd 43435 | InequalityTransitivity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΆ β β) & β’ (π β π΅ β€ π΄) & β’ (π β πΆ β€ π΅) β β’ (π β πΆ β€ π΄) | ||
This section formalizes theorems used in an n-digit addition proof generator. Other theorems required: deccl 12689 addcomli 11403 00id 11386 addridi 11398 addlidi 11399 eqid 2724 dec0h 12696 decadd 12728 decaddc 12729. | ||
Theorem | unitadd 43436 | Theorem used in conjunction with decaddc 12729 to absorb carry when generating n-digit addition synthetic proofs. (Contributed by Stanislas Polu, 7-Apr-2020.) |
β’ (π΄ + π΅) = πΉ & β’ (πΆ + 1) = π΅ & β’ π΄ β β0 & β’ πΆ β β0 β β’ ((π΄ + πΆ) + 1) = πΉ | ||
Theorem | gsumws3 43437 | Valuation of a length 3 word in a monoid. (Contributed by Stanislas Polu, 9-Sep-2020.) |
β’ π΅ = (BaseβπΊ) & β’ + = (+gβπΊ) β β’ ((πΊ β Mnd β§ (π β π΅ β§ (π β π΅ β§ π β π΅))) β (πΊ Ξ£g β¨βπππββ©) = (π + (π + π))) | ||
Theorem | gsumws4 43438 | Valuation of a length 4 word in a monoid. (Contributed by Stanislas Polu, 10-Sep-2020.) |
β’ π΅ = (BaseβπΊ) & β’ + = (+gβπΊ) β β’ ((πΊ β Mnd β§ (π β π΅ β§ (π β π΅ β§ (π β π΅ β§ π β π΅)))) β (πΊ Ξ£g β¨βππππββ©) = (π + (π + (π + π)))) | ||
Theorem | amgm2d 43439 | Arithmetic-geometric mean inequality for π = 2, derived from amgmlem 26838. (Contributed by Stanislas Polu, 8-Sep-2020.) |
β’ (π β π΄ β β+) & β’ (π β π΅ β β+) β β’ (π β ((π΄ Β· π΅)βπ(1 / 2)) β€ ((π΄ + π΅) / 2)) | ||
Theorem | amgm3d 43440 | Arithmetic-geometric mean inequality for π = 3. (Contributed by Stanislas Polu, 11-Sep-2020.) |
β’ (π β π΄ β β+) & β’ (π β π΅ β β+) & β’ (π β πΆ β β+) β β’ (π β ((π΄ Β· (π΅ Β· πΆ))βπ(1 / 3)) β€ ((π΄ + (π΅ + πΆ)) / 3)) | ||
Theorem | amgm4d 43441 | Arithmetic-geometric mean inequality for π = 4. (Contributed by Stanislas Polu, 11-Sep-2020.) |
β’ (π β π΄ β β+) & β’ (π β π΅ β β+) & β’ (π β πΆ β β+) & β’ (π β π· β β+) β β’ (π β ((π΄ Β· (π΅ Β· (πΆ Β· π·)))βπ(1 / 4)) β€ ((π΄ + (π΅ + (πΆ + π·))) / 4)) | ||
Theorem | spALT 43442 | sp 2168 can be proven from the other classic axioms. (Contributed by Rohan Ridenour, 3-Nov-2023.) (Proof modification is discouraged.) Use sp 2168 instead. (New usage is discouraged.) |
β’ (βπ₯π β π) | ||
Theorem | elnelneqd 43443 | Two classes are not equal if there is an element of one which is not an element of the other. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
β’ (π β πΆ β π΄) & β’ (π β Β¬ πΆ β π΅) β β’ (π β Β¬ π΄ = π΅) | ||
Theorem | elnelneq2d 43444 | Two classes are not equal if one but not the other is an element of a given class. (Contributed by Rohan Ridenour, 12-Aug-2023.) |
β’ (π β π΄ β πΆ) & β’ (π β Β¬ π΅ β πΆ) β β’ (π β Β¬ π΄ = π΅) | ||
Theorem | rr-spce 43445* | Prove an existential. (Contributed by Rohan Ridenour, 12-Aug-2023.) |
β’ ((π β§ π₯ = π΄) β π) & β’ (π β π΄ β π) β β’ (π β βπ₯π) | ||
Theorem | rexlimdvaacbv 43446* | Unpack a restricted existential antecedent while changing the variable with implicit substitution. The equivalent of this theorem without the bound variable change is rexlimdvaa 3148. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
β’ (π₯ = π¦ β (π β π)) & β’ ((π β§ (π¦ β π΄ β§ π)) β π) β β’ (π β (βπ₯ β π΄ π β π)) | ||
Theorem | rexlimddvcbvw 43447* | Unpack a restricted existential assumption while changing the variable with implicit substitution. Similar to rexlimdvaacbv 43446. The equivalent of this theorem without the bound variable change is rexlimddv 3153. Version of rexlimddvcbv 43448 with a disjoint variable condition, which does not require ax-13 2363. (Contributed by Rohan Ridenour, 3-Aug-2023.) (Revised by Gino Giotto, 2-Apr-2024.) |
β’ (π β βπ₯ β π΄ π) & β’ ((π β§ (π¦ β π΄ β§ π)) β π) & β’ (π₯ = π¦ β (π β π)) β β’ (π β π) | ||
Theorem | rexlimddvcbv 43448* | Unpack a restricted existential assumption while changing the variable with implicit substitution. Similar to rexlimdvaacbv 43446. The equivalent of this theorem without the bound variable change is rexlimddv 3153. Usage of this theorem is discouraged because it depends on ax-13 2363, see rexlimddvcbvw 43447 for a weaker version that does not require it. (Contributed by Rohan Ridenour, 3-Aug-2023.) (New usage is discouraged.) |
β’ (π β βπ₯ β π΄ π) & β’ ((π β§ (π¦ β π΄ β§ π)) β π) & β’ (π₯ = π¦ β (π β π)) β β’ (π β π) | ||
Theorem | rr-elrnmpt3d 43449* | Elementhood in an image set. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
β’ πΉ = (π₯ β π΄ β¦ π΅) & β’ (π β πΆ β π΄) & β’ (π β π· β π) & β’ ((π β§ π₯ = πΆ) β π΅ = π·) β β’ (π β π· β ran πΉ) | ||
Theorem | finnzfsuppd 43450* | If a function is zero outside of a finite set, it has finite support. (Contributed by Rohan Ridenour, 13-May-2024.) |
β’ (π β πΉ β π) & β’ (π β πΉ Fn π·) & β’ (π β π β π) & β’ (π β π΄ β Fin) & β’ ((π β§ π₯ β π·) β (π₯ β π΄ β¨ (πΉβπ₯) = π)) β β’ (π β πΉ finSupp π) | ||
Theorem | rr-phpd 43451 | Equivalent of php 9206 without negation. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
β’ (π β π΄ β Ο) & β’ (π β π΅ β π΄) & β’ (π β π΄ β π΅) β β’ (π β π΄ = π΅) | ||
Theorem | suceqd 43452 | Deduction associated with suceq 6420. (Contributed by Rohan Ridenour, 8-Aug-2023.) |
β’ (π β π΄ = π΅) β β’ (π β suc π΄ = suc π΅) | ||
Theorem | tfindsd 43453* | Deduction associated with tfinds 7842. (Contributed by Rohan Ridenour, 8-Aug-2023.) |
β’ (π₯ = β β (π β π)) & β’ (π₯ = π¦ β (π β π)) & β’ (π₯ = suc π¦ β (π β π)) & β’ (π₯ = π΄ β (π β π)) & β’ (π β π) & β’ ((π β§ π¦ β On β§ π) β π) & β’ ((π β§ Lim π₯ β§ βπ¦ β π₯ π) β π) & β’ (π β π΄ β On) β β’ (π β π) | ||
Syntax | cmnring 43454 | Extend class notation with the monoid ring function. |
class MndRing | ||
Definition | df-mnring 43455* | Define the monoid ring function. This takes a monoid π and a ring π and produces a free left module over π with a product extending the monoid function on π. (Contributed by Rohan Ridenour, 13-May-2024.) |
β’ MndRing = (π β V, π β V β¦ β¦(π freeLMod (Baseβπ)) / π£β¦(π£ sSet β¨(.rβndx), (π₯ β (Baseβπ£), π¦ β (Baseβπ£) β¦ (π£ Ξ£g (π β (Baseβπ), π β (Baseβπ) β¦ (π β (Baseβπ) β¦ if(π = (π(+gβπ)π), ((π₯βπ)(.rβπ)(π¦βπ)), (0gβπ))))))β©)) | ||
Theorem | mnringvald 43456* | Value of the monoid ring function. (Contributed by Rohan Ridenour, 14-May-2024.) |
β’ πΉ = (π MndRing π) & β’ Β· = (.rβπ ) & β’ 0 = (0gβπ ) & β’ π΄ = (Baseβπ) & β’ + = (+gβπ) & β’ π = (π freeLMod π΄) & β’ π΅ = (Baseβπ) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β πΉ = (π sSet β¨(.rβndx), (π₯ β π΅, π¦ β π΅ β¦ (π Ξ£g (π β π΄, π β π΄ β¦ (π β π΄ β¦ if(π = (π + π), ((π₯βπ) Β· (π¦βπ)), 0 )))))β©)) | ||
Theorem | mnringnmulrd 43457 | Components of a monoid ring other than its ring product match its underlying free module. (Contributed by Rohan Ridenour, 14-May-2024.) (Revised by AV, 1-Nov-2024.) |
β’ πΉ = (π MndRing π) & β’ πΈ = Slot (πΈβndx) & β’ (πΈβndx) β (.rβndx) & β’ π΄ = (Baseβπ) & β’ π = (π freeLMod π΄) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β (πΈβπ) = (πΈβπΉ)) | ||
Theorem | mnringnmulrdOLD 43458 | Obsolete version of mnringnmulrd 43457 as of 1-Nov-2024. Components of a monoid ring other than its ring product match its underlying free module. (Contributed by Rohan Ridenour, 14-May-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
β’ πΉ = (π MndRing π) & β’ πΈ = Slot π & β’ π β β & β’ π β (.rβndx) & β’ π΄ = (Baseβπ) & β’ π = (π freeLMod π΄) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β (πΈβπ) = (πΈβπΉ)) | ||
Theorem | mnringbased 43459 | The base set of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (Proof shortened by AV, 1-Nov-2024.) |
β’ πΉ = (π MndRing π) & β’ π΄ = (Baseβπ) & β’ π = (π freeLMod π΄) & β’ π΅ = (Baseβπ) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β π΅ = (BaseβπΉ)) | ||
Theorem | mnringbasedOLD 43460 | Obsolete version of mnringnmulrd 43457 as of 1-Nov-2024. The base set of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
β’ πΉ = (π MndRing π) & β’ π΄ = (Baseβπ) & β’ π = (π freeLMod π΄) & β’ π΅ = (Baseβπ) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β π΅ = (BaseβπΉ)) | ||
Theorem | mnringbaserd 43461 | The base set of a monoid ring. Converse of mnringbased 43459. (Contributed by Rohan Ridenour, 14-May-2024.) |
β’ πΉ = (π MndRing π) & β’ π΅ = (BaseβπΉ) & β’ π΄ = (Baseβπ) & β’ π = (π freeLMod π΄) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β π΅ = (Baseβπ)) | ||
Theorem | mnringelbased 43462 | Membership in the base set of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) |
β’ πΉ = (π MndRing π) & β’ π΅ = (BaseβπΉ) & β’ π΄ = (Baseβπ) & β’ πΆ = (Baseβπ ) & β’ 0 = (0gβπ ) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β (π β π΅ β (π β (πΆ βm π΄) β§ π finSupp 0 ))) | ||
Theorem | mnringbasefd 43463 | Elements of a monoid ring are functions. (Contributed by Rohan Ridenour, 14-May-2024.) |
β’ πΉ = (π MndRing π) & β’ π΅ = (BaseβπΉ) & β’ π΄ = (Baseβπ) & β’ πΆ = (Baseβπ ) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π΅) β β’ (π β π:π΄βΆπΆ) | ||
Theorem | mnringbasefsuppd 43464 | Elements of a monoid ring are finitely supported. (Contributed by Rohan Ridenour, 14-May-2024.) |
β’ πΉ = (π MndRing π) & β’ π΅ = (BaseβπΉ) & β’ 0 = (0gβπ ) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π΅) β β’ (π β π finSupp 0 ) | ||
Theorem | mnringaddgd 43465 | The additive operation of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (Proof shortened by AV, 1-Nov-2024.) |
β’ πΉ = (π MndRing π) & β’ π΄ = (Baseβπ) & β’ π = (π freeLMod π΄) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β (+gβπ) = (+gβπΉ)) | ||
Theorem | mnringaddgdOLD 43466 | Obsolete version of mnringaddgd 43465 as of 1-Nov-2024. The additive operation of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
β’ πΉ = (π MndRing π) & β’ π΄ = (Baseβπ) & β’ π = (π freeLMod π΄) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β (+gβπ) = (+gβπΉ)) | ||
Theorem | mnring0gd 43467 | The additive identity of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) |
β’ πΉ = (π MndRing π) & β’ π΄ = (Baseβπ) & β’ π = (π freeLMod π΄) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β (0gβπ) = (0gβπΉ)) | ||
Theorem | mnring0g2d 43468 | The additive identity of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) |
β’ πΉ = (π MndRing π) & β’ 0 = (0gβπ ) & β’ π΄ = (Baseβπ) & β’ (π β π β Ring) & β’ (π β π β π) β β’ (π β (π΄ Γ { 0 }) = (0gβπΉ)) | ||
Theorem | mnringmulrd 43469* | The ring product of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) |
β’ πΉ = (π MndRing π) & β’ π΅ = (BaseβπΉ) & β’ Β· = (.rβπ ) & β’ 0 = (0gβπ ) & β’ π΄ = (Baseβπ) & β’ + = (+gβπ) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β (π₯ β π΅, π¦ β π΅ β¦ (πΉ Ξ£g (π β π΄, π β π΄ β¦ (π β π΄ β¦ if(π = (π + π), ((π₯βπ) Β· (π¦βπ)), 0 ))))) = (.rβπΉ)) | ||
Theorem | mnringscad 43470 | The scalar ring of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (Proof shortened by AV, 1-Nov-2024.) |
β’ πΉ = (π MndRing π) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β π = (ScalarβπΉ)) | ||
Theorem | mnringscadOLD 43471 | Obsolete version of mnringscad 43470 as of 1-Nov-2024. The scalar ring of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
β’ πΉ = (π MndRing π) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β π = (ScalarβπΉ)) | ||
Theorem | mnringvscad 43472 | The scalar product of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (Proof shortened by AV, 1-Nov-2024.) |
β’ πΉ = (π MndRing π) & β’ π΅ = (Baseβπ) & β’ π = (π freeLMod π΅) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β ( Β·π βπ) = ( Β·π βπΉ)) | ||
Theorem | mnringvscadOLD 43473 | Obsolete version of mnringvscad 43472 as of 1-Nov-2024. The scalar product of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
β’ πΉ = (π MndRing π) & β’ π΅ = (Baseβπ) & β’ π = (π freeLMod π΅) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β ( Β·π βπ) = ( Β·π βπΉ)) | ||
Theorem | mnringlmodd 43474 | Monoid rings are left modules. (Contributed by Rohan Ridenour, 14-May-2024.) |
β’ πΉ = (π MndRing π) & β’ (π β π β Ring) & β’ (π β π β π) β β’ (π β πΉ β LMod) | ||
Theorem | mnringmulrvald 43475* | Value of multiplication in a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) |
β’ πΉ = (π MndRing π) & β’ π΅ = (BaseβπΉ) & β’ β = (.rβπ ) & β’ π = (0gβπ ) & β’ π΄ = (Baseβπ) & β’ + = (+gβπ) & β’ Β· = (.rβπΉ) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π β π΅) & β’ (π β π β π΅) β β’ (π β (π Β· π) = (πΉ Ξ£g (π β π΄, π β π΄ β¦ (π β π΄ β¦ if(π = (π + π), ((πβπ) β (πβπ)), π ))))) | ||
Theorem | mnringmulrcld 43476 | Monoid rings are closed under multiplication. (Contributed by Rohan Ridenour, 14-May-2024.) |
β’ πΉ = (π MndRing π) & β’ π΅ = (BaseβπΉ) & β’ π΄ = (Baseβπ) & β’ Β· = (.rβπΉ) & β’ (π β π β Ring) & β’ (π β π β π) & β’ (π β π β π΅) & β’ (π β π β π΅) β β’ (π β (π Β· π) β π΅) | ||
Theorem | gru0eld 43477 | A nonempty Grothendieck universe contains the empty set. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
β’ (π β πΊ β Univ) & β’ (π β π΄ β πΊ) β β’ (π β β β πΊ) | ||
Theorem | grusucd 43478 | Grothendieck universes are closed under ordinal successor. (Contributed by Rohan Ridenour, 9-Aug-2023.) |
β’ (π β πΊ β Univ) & β’ (π β π΄ β πΊ) β β’ (π β suc π΄ β πΊ) | ||
Theorem | r1rankcld 43479 | Any rank of the cumulative hierarchy is closed under the rank function. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
β’ (π β π΄ β (π 1βπ )) β β’ (π β (rankβπ΄) β (π 1βπ )) | ||
Theorem | grur1cld 43480 | Grothendieck universes are closed under the cumulative hierarchy function. (Contributed by Rohan Ridenour, 8-Aug-2023.) |
β’ (π β πΊ β Univ) & β’ (π β π΄ β πΊ) β β’ (π β (π 1βπ΄) β πΊ) | ||
Theorem | grurankcld 43481 | Grothendieck universes are closed under the rank function. (Contributed by Rohan Ridenour, 9-Aug-2023.) |
β’ (π β πΊ β Univ) & β’ (π β π΄ β πΊ) β β’ (π β (rankβπ΄) β πΊ) | ||
Theorem | grurankrcld 43482 | If a Grothendieck universe contains a set's rank, it contains that set. (Contributed by Rohan Ridenour, 9-Aug-2023.) |
β’ (π β πΊ β Univ) & β’ (π β (rankβπ΄) β πΊ) & β’ (π β π΄ β π) β β’ (π β π΄ β πΊ) | ||
Syntax | cscott 43483 | Extend class notation with the Scott's trick operation. |
class Scott π΄ | ||
Definition | df-scott 43484* | Define the Scott operation. This operation constructs a subset of the input class which is nonempty whenever its input is using Scott's trick. (Contributed by Rohan Ridenour, 9-Aug-2023.) |
β’ Scott π΄ = {π₯ β π΄ β£ βπ¦ β π΄ (rankβπ₯) β (rankβπ¦)} | ||
Theorem | scotteqd 43485 | Equality theorem for the Scott operation. (Contributed by Rohan Ridenour, 9-Aug-2023.) |
β’ (π β π΄ = π΅) β β’ (π β Scott π΄ = Scott π΅) | ||
Theorem | scotteq 43486 | Closed form of scotteqd 43485. (Contributed by Rohan Ridenour, 9-Aug-2023.) |
β’ (π΄ = π΅ β Scott π΄ = Scott π΅) | ||
Theorem | nfscott 43487 | Bound-variable hypothesis builder for the Scott operation. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
β’ β²π₯π΄ β β’ β²π₯Scott π΄ | ||
Theorem | scottabf 43488* | Value of the Scott operation at a class abstraction. Variant of scottab 43489 with a nonfreeness hypothesis instead of a disjoint variable condition. (Contributed by Rohan Ridenour, 14-Aug-2023.) |
β’ β²π₯π & β’ (π₯ = π¦ β (π β π)) β β’ Scott {π₯ β£ π} = {π₯ β£ (π β§ βπ¦(π β (rankβπ₯) β (rankβπ¦)))} | ||
Theorem | scottab 43489* | Value of the Scott operation at a class abstraction. (Contributed by Rohan Ridenour, 14-Aug-2023.) |
β’ (π₯ = π¦ β (π β π)) β β’ Scott {π₯ β£ π} = {π₯ β£ (π β§ βπ¦(π β (rankβπ₯) β (rankβπ¦)))} | ||
Theorem | scottabes 43490* | Value of the Scott operation at a class abstraction. Variant of scottab 43489 using explicit substitution. (Contributed by Rohan Ridenour, 14-Aug-2023.) |
β’ Scott {π₯ β£ π} = {π₯ β£ (π β§ βπ¦([π¦ / π₯]π β (rankβπ₯) β (rankβπ¦)))} | ||
Theorem | scottss 43491 | Scott's trick produces a subset of the input class. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
β’ Scott π΄ β π΄ | ||
Theorem | elscottab 43492* | An element of the output of the Scott operation applied to a class abstraction satisfies the class abstraction's predicate. (Contributed by Rohan Ridenour, 14-Aug-2023.) |
β’ (π₯ = π¦ β (π β π)) β β’ (π¦ β Scott {π₯ β£ π} β π) | ||
Theorem | scottex2 43493 | scottex 9876 expressed using Scott. (Contributed by Rohan Ridenour, 9-Aug-2023.) |
β’ Scott π΄ β V | ||
Theorem | scotteld 43494* | The Scott operation sends inhabited classes to inhabited sets. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
β’ (π β βπ₯ π₯ β π΄) β β’ (π β βπ₯ π₯ β Scott π΄) | ||
Theorem | scottelrankd 43495 | Property of a Scott's trick set. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
β’ (π β π΅ β Scott π΄) & β’ (π β πΆ β Scott π΄) β β’ (π β (rankβπ΅) β (rankβπΆ)) | ||
Theorem | scottrankd 43496 | Rank of a nonempty Scott's trick set. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
β’ (π β π΅ β Scott π΄) β β’ (π β (rankβScott π΄) = suc (rankβπ΅)) | ||
Theorem | gruscottcld 43497 | If a Grothendieck universe contains an element of a Scott's trick set, it contains the Scott's trick set. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
β’ (π β πΊ β Univ) & β’ (π β π΅ β πΊ) & β’ (π β π΅ β Scott π΄) β β’ (π β Scott π΄ β πΊ) | ||
Syntax | ccoll 43498 | Extend class notation with the collection operation. |
class (πΉ Coll π΄) | ||
Definition | df-coll 43499* | Define the collection operation. This is similar to the image set operation β, but it uses Scott's trick to ensure the output is always a set. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
β’ (πΉ Coll π΄) = βͺ π₯ β π΄ Scott (πΉ β {π₯}) | ||
Theorem | dfcoll2 43500* | Alternate definition of the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
β’ (πΉ Coll π΄) = βͺ π₯ β π΄ Scott {π¦ β£ π₯πΉπ¦} |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |