![]() |
Metamath
Proof Explorer Theorem List (p. 435 of 485) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30820) |
![]() (30821-32343) |
![]() (32344-48429) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | frege19 43401 | A closed form of syl6 35. Proposition 19 of [Frege1879] p. 39. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜒 → 𝜃) → (𝜑 → (𝜓 → 𝜃)))) | ||
Theorem | frege23 43402 | Syllogism followed by rotation of three antecedents. Proposition 23 of [Frege1879] p. 42. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → (𝜒 → 𝜃))) → ((𝜏 → 𝜑) → (𝜓 → (𝜒 → (𝜏 → 𝜃))))) | ||
Theorem | frege15 43403 | A closed form of com4r 94. Proposition 15 of [Frege1879] p. 38. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) → (𝜃 → (𝜑 → (𝜓 → (𝜒 → 𝜏))))) | ||
Theorem | frege21 43404 | Replace antecedent in antecedent. Proposition 21 of [Frege1879] p. 40. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (((𝜑 → 𝜓) → 𝜒) → ((𝜑 → 𝜃) → ((𝜃 → 𝜓) → 𝜒))) | ||
Theorem | frege20 43405 | A closed form of syl8 76. Proposition 20 of [Frege1879] p. 40. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → (𝜒 → 𝜃))) → ((𝜃 → 𝜏) → (𝜑 → (𝜓 → (𝜒 → 𝜏))))) | ||
Theorem | axfrege28 43406 | Contraposition. Identical to con3 153. Theorem *2.16 of [WhiteheadRussell] p. 103. (Contributed by RP, 24-Dec-2019.) |
⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) | ||
Axiom | ax-frege28 43407 | Contraposition. Identical to con3 153. Theorem *2.16 of [WhiteheadRussell] p. 103. Axiom 28 of [Frege1879] p. 43. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) | ||
Theorem | frege29 43408 | Closed form of con3d 152. Proposition 29 of [Frege1879] p. 43. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → (¬ 𝜒 → ¬ 𝜓))) | ||
Theorem | frege30 43409 | Commuted, closed form of con3d 152. Proposition 30 of [Frege1879] p. 44. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜓 → (¬ 𝜒 → ¬ 𝜑))) | ||
Theorem | axfrege31 43410 | Identical to notnotr 130. Axiom 31 of [Frege1879] p. 44. (Contributed by RP, 24-Dec-2019.) |
⊢ (¬ ¬ 𝜑 → 𝜑) | ||
Axiom | ax-frege31 43411 | 𝜑 cannot be denied and (at the same time ) ¬ ¬ 𝜑 affirmed. Duplex negatio affirmat. The denial of the denial is affirmation. Identical to notnotr 130. Axiom 31 of [Frege1879] p. 44. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
⊢ (¬ ¬ 𝜑 → 𝜑) | ||
Theorem | frege32 43412 | Deduce con1 146 from con3 153. Proposition 32 of [Frege1879] p. 44. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (((¬ 𝜑 → 𝜓) → (¬ 𝜓 → ¬ ¬ 𝜑)) → ((¬ 𝜑 → 𝜓) → (¬ 𝜓 → 𝜑))) | ||
Theorem | frege33 43413 | If 𝜑 or 𝜓 takes place, then 𝜓 or 𝜑 takes place. Identical to con1 146. Proposition 33 of [Frege1879] p. 44. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((¬ 𝜑 → 𝜓) → (¬ 𝜓 → 𝜑)) | ||
Theorem | frege34 43414 | If as a consequence of the occurrence of the circumstance 𝜑, when the obstacle 𝜓 is removed, 𝜒 takes place, then from the circumstance that 𝜒 does not take place while 𝜑 occurs the occurrence of the obstacle 𝜓 can be inferred. Closed form of con1d 145. Proposition 34 of [Frege1879] p. 45. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (¬ 𝜓 → 𝜒)) → (𝜑 → (¬ 𝜒 → 𝜓))) | ||
Theorem | frege35 43415 | Commuted, closed form of con1d 145. Proposition 35 of [Frege1879] p. 45. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (¬ 𝜓 → 𝜒)) → (¬ 𝜒 → (𝜑 → 𝜓))) | ||
Theorem | frege36 43416 | The case in which 𝜓 is denied, ¬ 𝜑 is affirmed, and 𝜑 is affirmed does not occur. If 𝜑 occurs, then (at least) one of the two, 𝜑 or 𝜓, takes place (no matter what 𝜓 might be). Identical to pm2.24 124. Proposition 36 of [Frege1879] p. 45. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (𝜑 → (¬ 𝜑 → 𝜓)) | ||
Theorem | frege37 43417 | If 𝜒 is a necessary consequence of the occurrence of 𝜓 or 𝜑, then 𝜒 is a necessary consequence of 𝜑 alone. Similar to a closed form of orcs 873. Proposition 37 of [Frege1879] p. 46. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (((¬ 𝜑 → 𝜓) → 𝜒) → (𝜑 → 𝜒)) | ||
Theorem | frege38 43418 | Identical to pm2.21 123. Proposition 38 of [Frege1879] p. 46. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | ||
Theorem | frege39 43419 | Syllogism between pm2.18 128 and pm2.24 124. Proposition 39 of [Frege1879] p. 46. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((¬ 𝜑 → 𝜑) → (¬ 𝜑 → 𝜓)) | ||
Theorem | frege40 43420 | Anything implies pm2.18 128. Proposition 40 of [Frege1879] p. 46. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (¬ 𝜑 → ((¬ 𝜓 → 𝜓) → 𝜓)) | ||
Theorem | axfrege41 43421 | Identical to notnot 142. Axiom 41 of [Frege1879] p. 47. (Contributed by RP, 24-Dec-2019.) |
⊢ (𝜑 → ¬ ¬ 𝜑) | ||
Axiom | ax-frege41 43422 | The affirmation of 𝜑 denies the denial of 𝜑. Identical to notnot 142. Axiom 41 of [Frege1879] p. 47. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
⊢ (𝜑 → ¬ ¬ 𝜑) | ||
Theorem | frege42 43423 | Not not id 22. Proposition 42 of [Frege1879] p. 47. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ¬ ¬ (𝜑 → 𝜑) | ||
Theorem | frege43 43424 | If there is a choice only between 𝜑 and 𝜑, then 𝜑 takes place. Identical to pm2.18 128. Proposition 43 of [Frege1879] p. 47. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((¬ 𝜑 → 𝜑) → 𝜑) | ||
Theorem | frege44 43425 | Similar to a commuted pm2.62 897. Proposition 44 of [Frege1879] p. 47. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((¬ 𝜑 → 𝜓) → ((𝜓 → 𝜑) → 𝜑)) | ||
Theorem | frege45 43426 | Deduce pm2.6 190 from con1 146. Proposition 45 of [Frege1879] p. 47. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (((¬ 𝜑 → 𝜓) → (¬ 𝜓 → 𝜑)) → ((¬ 𝜑 → 𝜓) → ((𝜑 → 𝜓) → 𝜓))) | ||
Theorem | frege46 43427 | If 𝜓 holds when 𝜑 occurs as well as when 𝜑 does not occur, then 𝜓 holds. If 𝜓 or 𝜑 occurs and if the occurrences of 𝜑 has 𝜓 as a necessary consequence, then 𝜓 takes place. Identical to pm2.6 190. Proposition 46 of [Frege1879] p. 48. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((¬ 𝜑 → 𝜓) → ((𝜑 → 𝜓) → 𝜓)) | ||
Theorem | frege47 43428 | Deduce consequence follows from either path implied by a disjunction. If 𝜑, as well as 𝜓 is sufficient condition for 𝜒 and 𝜓 or 𝜑 takes place, then the proposition 𝜒 holds. Proposition 47 of [Frege1879] p. 48. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((¬ 𝜑 → 𝜓) → ((𝜓 → 𝜒) → ((𝜑 → 𝜒) → 𝜒))) | ||
Theorem | frege48 43429 | Closed form of syllogism with internal disjunction. If 𝜑 is a sufficient condition for the occurrence of 𝜒 or 𝜓 and if 𝜒, as well as 𝜓, is a sufficient condition for 𝜃, then 𝜑 is a sufficient condition for 𝜃. See application in frege101 43541. Proposition 48 of [Frege1879] p. 49. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (¬ 𝜓 → 𝜒)) → ((𝜒 → 𝜃) → ((𝜓 → 𝜃) → (𝜑 → 𝜃)))) | ||
Theorem | frege49 43430 | Closed form of deduction with disjunction. Proposition 49 of [Frege1879] p. 49. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((¬ 𝜑 → 𝜓) → ((𝜑 → 𝜒) → ((𝜓 → 𝜒) → 𝜒))) | ||
Theorem | frege50 43431 | Closed form of jaoi 855. Proposition 50 of [Frege1879] p. 49. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → 𝜓) → ((𝜒 → 𝜓) → ((¬ 𝜑 → 𝜒) → 𝜓))) | ||
Theorem | frege51 43432 | Compare with jaod 857. Proposition 51 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜃 → 𝜒) → (𝜑 → ((¬ 𝜓 → 𝜃) → 𝜒)))) | ||
Here we leverage df-ifp 1061 to partition a wff into two that are disjoint with the selector wff. Thus if we are given ⊢ (𝜑 ↔ if-(𝜓, 𝜒, 𝜃)) then we replace the concept (illegal in our notation ) (𝜑‘𝜓) with if-(𝜓, 𝜒, 𝜃) to reason about the values of the "function." Likewise, we replace the similarly illegal concept ∀𝜓𝜑 with (𝜒 ∧ 𝜃). | ||
Theorem | axfrege52a 43433 | Justification for ax-frege52a 43434. (Contributed by RP, 17-Apr-2020.) |
⊢ ((𝜑 ↔ 𝜓) → (if-(𝜑, 𝜃, 𝜒) → if-(𝜓, 𝜃, 𝜒))) | ||
Axiom | ax-frege52a 43434 | The case when the content of 𝜑 is identical with the content of 𝜓 and in which a proposition controlled by an element for which we substitute the content of 𝜑 is affirmed (in this specific case the identity logical function) and the same proposition, this time where we substituted the content of 𝜓, is denied does not take place. Part of Axiom 52 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
⊢ ((𝜑 ↔ 𝜓) → (if-(𝜑, 𝜃, 𝜒) → if-(𝜓, 𝜃, 𝜒))) | ||
Theorem | frege52aid 43435 | The case when the content of 𝜑 is identical with the content of 𝜓 and in which 𝜑 is affirmed and 𝜓 is denied does not take place. Identical to biimp 214. Part of Axiom 52 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) | ||
Theorem | frege53aid 43436 | Specialization of frege53a 43437. Proposition 53 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (𝜑 → ((𝜑 ↔ 𝜓) → 𝜓)) | ||
Theorem | frege53a 43437 | Lemma for frege55a 43445. Proposition 53 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (if-(𝜑, 𝜃, 𝜒) → ((𝜑 ↔ 𝜓) → if-(𝜓, 𝜃, 𝜒))) | ||
Theorem | axfrege54a 43438 | Justification for ax-frege54a 43439. Identical to biid 260. (Contributed by RP, 24-Dec-2019.) |
⊢ (𝜑 ↔ 𝜑) | ||
Axiom | ax-frege54a 43439 | Reflexive equality of wffs. The content of 𝜑 is identical with the content of 𝜑. Part of Axiom 54 of [Frege1879] p. 50. Identical to biid 260. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
⊢ (𝜑 ↔ 𝜑) | ||
Theorem | frege54cor0a 43440 | Synonym for logical equivalence. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜓 ↔ 𝜑) ↔ if-(𝜓, 𝜑, ¬ 𝜑)) | ||
Theorem | frege54cor1a 43441 | Reflexive equality. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ if-(𝜑, 𝜑, ¬ 𝜑) | ||
Theorem | frege55aid 43442 | Lemma for frege57aid 43449. Core proof of Proposition 55 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) |
⊢ ((𝜑 ↔ 𝜓) → (𝜓 ↔ 𝜑)) | ||
Theorem | frege55lem1a 43443 | Necessary deduction regarding substitution of value in equality. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜏 → if-(𝜓, 𝜑, ¬ 𝜑)) → (𝜏 → (𝜓 ↔ 𝜑))) | ||
Theorem | frege55lem2a 43444 | Core proof of Proposition 55 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 ↔ 𝜓) → if-(𝜓, 𝜑, ¬ 𝜑)) | ||
Theorem | frege55a 43445 | Proposition 55 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 ↔ 𝜓) → if-(𝜓, 𝜑, ¬ 𝜑)) | ||
Theorem | frege55cor1a 43446 | Proposition 55 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 ↔ 𝜓) → (𝜓 ↔ 𝜑)) | ||
Theorem | frege56aid 43447 | Lemma for frege57aid 43449. Proposition 56 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) → ((𝜓 ↔ 𝜑) → (𝜑 → 𝜓))) | ||
Theorem | frege56a 43448 | Proposition 56 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (((𝜑 ↔ 𝜓) → (if-(𝜑, 𝜒, 𝜃) → if-(𝜓, 𝜒, 𝜃))) → ((𝜓 ↔ 𝜑) → (if-(𝜑, 𝜒, 𝜃) → if-(𝜓, 𝜒, 𝜃)))) | ||
Theorem | frege57aid 43449 | This is the all important formula which allows to apply Frege-style definitions and explore their consequences. A closed form of biimpri 227. Proposition 57 of [Frege1879] p. 51. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) | ||
Theorem | frege57a 43450 | Analogue of frege57aid 43449. Proposition 57 of [Frege1879] p. 51. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 ↔ 𝜓) → (if-(𝜓, 𝜒, 𝜃) → if-(𝜑, 𝜒, 𝜃))) | ||
Theorem | axfrege58a 43451 | Identical to anifp 1069. Justification for ax-frege58a 43452. (Contributed by RP, 28-Mar-2020.) |
⊢ ((𝜓 ∧ 𝜒) → if-(𝜑, 𝜓, 𝜒)) | ||
Axiom | ax-frege58a 43452 | If ∀𝑥𝜑 is affirmed, [𝑦 / 𝑥]𝜑 cannot be denied. Identical to stdpc4 2063. Axiom 58 of [Frege1879] p. 51. (Contributed by RP, 28-Mar-2020.) (New usage is discouraged.) |
⊢ ((𝜓 ∧ 𝜒) → if-(𝜑, 𝜓, 𝜒)) | ||
Theorem | frege58acor 43453 | Lemma for frege59a 43454. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
⊢ (((𝜓 → 𝜒) ∧ (𝜃 → 𝜏)) → (if-(𝜑, 𝜓, 𝜃) → if-(𝜑, 𝜒, 𝜏))) | ||
Theorem | frege59a 43454 |
A kind of Aristotelian inference. Namely Felapton or Fesapo. Proposition
59 of [Frege1879] p. 51.
Note: in the Bauer-Meenfelberg translation published in van Heijenoort's collection From Frege to Goedel, this proof has the frege12 43390 incorrectly referenced where frege30 43409 is in the original. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
⊢ (if-(𝜑, 𝜓, 𝜃) → (¬ if-(𝜑, 𝜒, 𝜏) → ¬ ((𝜓 → 𝜒) ∧ (𝜃 → 𝜏)))) | ||
Theorem | frege60a 43455 | Swap antecedents of ax-frege58a 43452. Proposition 60 of [Frege1879] p. 52. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
⊢ (((𝜓 → (𝜒 → 𝜃)) ∧ (𝜏 → (𝜂 → 𝜁))) → (if-(𝜑, 𝜒, 𝜂) → (if-(𝜑, 𝜓, 𝜏) → if-(𝜑, 𝜃, 𝜁)))) | ||
Theorem | frege61a 43456 | Lemma for frege65a 43460. Proposition 61 of [Frege1879] p. 52. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
⊢ ((if-(𝜑, 𝜓, 𝜒) → 𝜃) → ((𝜓 ∧ 𝜒) → 𝜃)) | ||
Theorem | frege62a 43457 | A kind of Aristotelian inference. This judgement replaces the mode of inference barbara 2651 when the minor premise has a particular context. Proposition 62 of [Frege1879] p. 52. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
⊢ (if-(𝜑, 𝜓, 𝜃) → (((𝜓 → 𝜒) ∧ (𝜃 → 𝜏)) → if-(𝜑, 𝜒, 𝜏))) | ||
Theorem | frege63a 43458 | Proposition 63 of [Frege1879] p. 52. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
⊢ (if-(𝜑, 𝜓, 𝜃) → (𝜂 → (((𝜓 → 𝜒) ∧ (𝜃 → 𝜏)) → if-(𝜑, 𝜒, 𝜏)))) | ||
Theorem | frege64a 43459 | Lemma for frege65a 43460. Proposition 64 of [Frege1879] p. 53. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
⊢ ((if-(𝜑, 𝜓, 𝜏) → if-(𝜎, 𝜒, 𝜂)) → (((𝜒 → 𝜃) ∧ (𝜂 → 𝜁)) → (if-(𝜑, 𝜓, 𝜏) → if-(𝜎, 𝜃, 𝜁)))) | ||
Theorem | frege65a 43460 | A kind of Aristotelian inference. This judgement replaces the mode of inference barbara 2651 when the minor premise has a general context. Proposition 65 of [Frege1879] p. 53. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
⊢ (((𝜓 → 𝜒) ∧ (𝜏 → 𝜂)) → (((𝜒 → 𝜃) ∧ (𝜂 → 𝜁)) → (if-(𝜑, 𝜓, 𝜏) → if-(𝜑, 𝜃, 𝜁)))) | ||
Theorem | frege66a 43461 | Swap antecedents of frege65a 43460. Proposition 66 of [Frege1879] p. 54. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
⊢ (((𝜒 → 𝜃) ∧ (𝜂 → 𝜁)) → (((𝜓 → 𝜒) ∧ (𝜏 → 𝜂)) → (if-(𝜑, 𝜓, 𝜏) → if-(𝜑, 𝜃, 𝜁)))) | ||
Theorem | frege67a 43462 | Lemma for frege68a 43463. Proposition 67 of [Frege1879] p. 54. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
⊢ ((((𝜓 ∧ 𝜒) ↔ 𝜃) → (𝜃 → (𝜓 ∧ 𝜒))) → (((𝜓 ∧ 𝜒) ↔ 𝜃) → (𝜃 → if-(𝜑, 𝜓, 𝜒)))) | ||
Theorem | frege68a 43463 | Combination of applying a definition and applying it to a specific instance. Proposition 68 of [Frege1879] p. 54. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
⊢ (((𝜓 ∧ 𝜒) ↔ 𝜃) → (𝜃 → if-(𝜑, 𝜓, 𝜒))) | ||
Theorem | axfrege52c 43464 | Justification for ax-frege52c 43465. (Contributed by RP, 24-Dec-2019.) |
⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 → [𝐵 / 𝑥]𝜑)) | ||
Axiom | ax-frege52c 43465 | One side of dfsbcq 3775. Part of Axiom 52 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 → [𝐵 / 𝑥]𝜑)) | ||
Theorem | frege52b 43466 | The case when the content of 𝑥 is identical with the content of 𝑦 and in which a proposition controlled by an element for which we substitute the content of 𝑥 is affirmed and the same proposition, this time where we substitute the content of 𝑦, is denied does not take place. In [𝑥 / 𝑧]𝜑, 𝑥 can also occur in other than the argument (𝑧) places. Hence 𝑥 may still be contained in [𝑦 / 𝑧]𝜑. Part of Axiom 52 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑)) | ||
Theorem | frege53b 43467 | Lemma for frege102 (via frege92 43532). Proposition 53 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ([𝑦 / 𝑥]𝜑 → (𝑦 = 𝑧 → [𝑧 / 𝑥]𝜑)) | ||
Theorem | axfrege54c 43468 | Reflexive equality of classes. Identical to eqid 2725. Justification for ax-frege54c 43469. (Contributed by RP, 24-Dec-2019.) |
⊢ 𝐴 = 𝐴 | ||
Axiom | ax-frege54c 43469 | Reflexive equality of sets (as classes). Part of Axiom 54 of [Frege1879] p. 50. Identical to eqid 2725. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
⊢ 𝐴 = 𝐴 | ||
Theorem | frege54b 43470 | Reflexive equality of sets. The content of 𝑥 is identical with the content of 𝑥. Part of Axiom 54 of [Frege1879] p. 50. Slightly specialized version of eqid 2725. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ 𝑥 = 𝑥 | ||
Theorem | frege54cor1b 43471 | Reflexive equality. (Contributed by RP, 24-Dec-2019.) |
⊢ [𝑥 / 𝑦]𝑦 = 𝑥 | ||
Theorem | frege55lem1b 43472* | Necessary deduction regarding substitution of value in equality. (Contributed by RP, 24-Dec-2019.) |
⊢ ((𝜑 → [𝑥 / 𝑦]𝑦 = 𝑧) → (𝜑 → 𝑥 = 𝑧)) | ||
Theorem | frege55lem2b 43473 | Lemma for frege55b 43474. Core proof of Proposition 55 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (𝑥 = 𝑦 → [𝑦 / 𝑧]𝑧 = 𝑥) | ||
Theorem | frege55b 43474 |
Lemma for frege57b 43476. Proposition 55 of [Frege1879] p. 50.
Note that eqtr2 2749 incorporates eqcom 2732 which is stronger than this proposition which is identical to equcomi 2012. Is it possible that Frege tricked himself into assuming what he was out to prove? (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) | ||
Theorem | frege56b 43475 | Lemma for frege57b 43476. Proposition 56 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑)) → (𝑦 = 𝑥 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑))) | ||
Theorem | frege57b 43476 | Analogue of frege57aid 43449. Proposition 57 of [Frege1879] p. 51. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑧]𝜑 → [𝑥 / 𝑧]𝜑)) | ||
Theorem | axfrege58b 43477 | If ∀𝑥𝜑 is affirmed, [𝑦 / 𝑥]𝜑 cannot be denied. Identical to stdpc4 2063. Justification for ax-frege58b 43478. (Contributed by RP, 28-Mar-2020.) |
⊢ (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) | ||
Axiom | ax-frege58b 43478 | If ∀𝑥𝜑 is affirmed, [𝑦 / 𝑥]𝜑 cannot be denied. Identical to stdpc4 2063. Axiom 58 of [Frege1879] p. 51. (Contributed by RP, 28-Mar-2020.) (New usage is discouraged.) |
⊢ (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) | ||
Theorem | frege58bid 43479 | If ∀𝑥𝜑 is affirmed, 𝜑 cannot be denied. Identical to sp 2171. See ax-frege58b 43478 and frege58c 43498 for versions which more closely track the original. Axiom 58 of [Frege1879] p. 51. (Contributed by RP, 28-Mar-2020.) (Proof modification is discouraged.) |
⊢ (∀𝑥𝜑 → 𝜑) | ||
Theorem | frege58bcor 43480 | Lemma for frege59b 43481. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (∀𝑥(𝜑 → 𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) | ||
Theorem | frege59b 43481 |
A kind of Aristotelian inference. Namely Felapton or Fesapo. Proposition
59 of [Frege1879] p. 51.
Note: in the Bauer-Meenfelberg translation published in van Heijenoort's collection From Frege to Goedel, this proof has the frege12 43390 incorrectly referenced where frege30 43409 is in the original. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ([𝑦 / 𝑥]𝜑 → (¬ [𝑦 / 𝑥]𝜓 → ¬ ∀𝑥(𝜑 → 𝜓))) | ||
Theorem | frege60b 43482 | Swap antecedents of ax-frege58b 43478. Proposition 60 of [Frege1879] p. 52. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (∀𝑥(𝜑 → (𝜓 → 𝜒)) → ([𝑦 / 𝑥]𝜓 → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜒))) | ||
Theorem | frege61b 43483 | Lemma for frege65b 43487. Proposition 61 of [Frege1879] p. 52. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (([𝑥 / 𝑦]𝜑 → 𝜓) → (∀𝑦𝜑 → 𝜓)) | ||
Theorem | frege62b 43484 | A kind of Aristotelian inference. This judgement replaces the mode of inference barbara 2651 when the minor premise has a particular context. Proposition 62 of [Frege1879] p. 52. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ([𝑦 / 𝑥]𝜑 → (∀𝑥(𝜑 → 𝜓) → [𝑦 / 𝑥]𝜓)) | ||
Theorem | frege63b 43485 | Lemma for frege91 43531. Proposition 63 of [Frege1879] p. 52. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ([𝑦 / 𝑥]𝜑 → (𝜓 → (∀𝑥(𝜑 → 𝜒) → [𝑦 / 𝑥]𝜒))) | ||
Theorem | frege64b 43486 | Lemma for frege65b 43487. Proposition 64 of [Frege1879] p. 53. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (([𝑥 / 𝑦]𝜑 → [𝑧 / 𝑦]𝜓) → (∀𝑦(𝜓 → 𝜒) → ([𝑥 / 𝑦]𝜑 → [𝑧 / 𝑦]𝜒))) | ||
Theorem | frege65b 43487 |
A kind of Aristotelian inference. This judgement replaces the mode of
inference barbara 2651 when the minor premise has a general context.
Proposition 65 of [Frege1879] p. 53.
In Frege care is taken to point out that the variables in the first clauses are independent of each other and of the final term so another valid translation could be : ⊢ (∀𝑥([𝑥 / 𝑎]𝜑 → [𝑥 / 𝑏]𝜓) → (∀𝑦([𝑦 / 𝑏]𝜓 → [𝑦 / 𝑐]𝜒) → ([𝑧 / 𝑎]𝜑 → [𝑧 / 𝑐]𝜒))). But that is perhaps too pedantic a translation for this exploration. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥(𝜓 → 𝜒) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜒))) | ||
Theorem | frege66b 43488 | Swap antecedents of frege65b 43487. Proposition 66 of [Frege1879] p. 54. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥(𝜒 → 𝜑) → ([𝑦 / 𝑥]𝜒 → [𝑦 / 𝑥]𝜓))) | ||
Theorem | frege67b 43489 | Lemma for frege68b 43490. Proposition 67 of [Frege1879] p. 54. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → ∀𝑥𝜑)) → ((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → [𝑦 / 𝑥]𝜑))) | ||
Theorem | frege68b 43490 | Combination of applying a definition and applying it to a specific instance. Proposition 68 of [Frege1879] p. 54. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → [𝑦 / 𝑥]𝜑)) | ||
Begriffsschrift Chapter II with equivalence of classes (where they are sets). | ||
Theorem | frege53c 43491 | Proposition 53 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ ([𝐴 / 𝑥]𝜑 → (𝐴 = 𝐵 → [𝐵 / 𝑥]𝜑)) | ||
Theorem | frege54cor1c 43492* | Reflexive equality. (Contributed by RP, 24-Dec-2019.) (Revised by RP, 25-Apr-2020.) |
⊢ 𝐴 ∈ 𝐶 ⇒ ⊢ [𝐴 / 𝑥]𝑥 = 𝐴 | ||
Theorem | frege55lem1c 43493* | Necessary deduction regarding substitution of value in equality. (Contributed by RP, 24-Dec-2019.) |
⊢ ((𝜑 → [𝐴 / 𝑥]𝑥 = 𝐵) → (𝜑 → 𝐴 = 𝐵)) | ||
Theorem | frege55lem2c 43494* | Core proof of Proposition 55 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (𝑥 = 𝐴 → [𝐴 / 𝑧]𝑧 = 𝑥) | ||
Theorem | frege55c 43495 | Proposition 55 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ (𝑥 = 𝐴 → 𝐴 = 𝑥) | ||
Theorem | frege56c 43496* | Lemma for frege57c 43497. Proposition 56 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ 𝐵 ∈ 𝐶 ⇒ ⊢ ((𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 → [𝐵 / 𝑥]𝜑)) → (𝐵 = 𝐴 → ([𝐴 / 𝑥]𝜑 → [𝐵 / 𝑥]𝜑))) | ||
Theorem | frege57c 43497* | Swap order of implication in ax-frege52c 43465. Proposition 57 of [Frege1879] p. 51. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ 𝐶 ⇒ ⊢ (𝐴 = 𝐵 → ([𝐵 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜑)) | ||
Theorem | frege58c 43498 | Principle related to sp 2171. Axiom 58 of [Frege1879] p. 51. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑) | ||
Theorem | frege59c 43499 |
A kind of Aristotelian inference. Proposition 59 of [Frege1879] p. 51.
Note: in the Bauer-Meenfelberg translation published in van Heijenoort's collection From Frege to Goedel, this proof has the frege12 43390 incorrectly referenced where frege30 43409 is in the original. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ ([𝐴 / 𝑥]𝜑 → (¬ [𝐴 / 𝑥]𝜓 → ¬ ∀𝑥(𝜑 → 𝜓))) | ||
Theorem | frege60c 43500 | Swap antecedents of frege58c 43498. Proposition 60 of [Frege1879] p. 52. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (∀𝑥(𝜑 → (𝜓 → 𝜒)) → ([𝐴 / 𝑥]𝜓 → ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜒))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |