Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > stdpc4 | Structured version Visualization version GIF version |
Description: The specialization axiom of standard predicate calculus. It states that if a statement 𝜑 holds for all 𝑥, then it also holds for the specific case of 𝑡 (properly) substituted for 𝑥. Translated to traditional notation, it can be read: "∀𝑥𝜑(𝑥) → 𝜑(𝑡), provided that 𝑡 is free for 𝑥 in 𝜑(𝑥)". Axiom 4 of [Mendelson] p. 69. See also spsbc 3733 and rspsbc 3817. (Contributed by NM, 14-May-1993.) Revise df-sb 2072. (Revised by BJ, 22-Dec-2020.) |
Ref | Expression |
---|---|
stdpc4 | ⊢ (∀𝑥𝜑 → [𝑡 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ala1 1820 | . . . 4 ⊢ (∀𝑥𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
2 | 1 | a1d 25 | . . 3 ⊢ (∀𝑥𝜑 → (𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
3 | 2 | alrimiv 1934 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
4 | df-sb 2072 | . 2 ⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
5 | 3, 4 | sylibr 233 | 1 ⊢ (∀𝑥𝜑 → [𝑡 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 [wsb 2071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 |
This theorem depends on definitions: df-bi 206 df-sb 2072 |
This theorem is referenced by: sbtALT 2076 2stdpc4 2077 spsbim 2079 sbv 2095 sbft 2266 sb2 2482 sbtrt 2521 vexwt 2722 pm13.183 3599 spsbc 3733 nd1 10342 nd2 10343 bj-sbft 34951 bj-ab0 35087 wl-cbvalsbi 35698 sbtd 40171 axfrege58b 41476 pm10.14 41945 pm11.57 41975 |
Copyright terms: Public domain | W3C validator |