MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  stdpc4 Structured version   Visualization version   GIF version

Theorem stdpc4 2071
Description: The specialization axiom of standard predicate calculus. It states that if a statement 𝜑 holds for all 𝑥, then it also holds for the specific case of 𝑡 (properly) substituted for 𝑥. Translated to traditional notation, it can be read: "𝑥𝜑(𝑥) → 𝜑(𝑡), provided that 𝑡 is free for 𝑥 in 𝜑(𝑥)". Axiom 4 of [Mendelson] p. 69. See also spsbc 3729 and rspsbc 3812. (Contributed by NM, 14-May-1993.) Revise df-sb 2068. (Revised by BJ, 22-Dec-2020.)
Assertion
Ref Expression
stdpc4 (∀𝑥𝜑 → [𝑡 / 𝑥]𝜑)

Proof of Theorem stdpc4
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ala1 1816 . . . 4 (∀𝑥𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))
21a1d 25 . . 3 (∀𝑥𝜑 → (𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
32alrimiv 1930 . 2 (∀𝑥𝜑 → ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
4 df-sb 2068 . 2 ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
53, 4sylibr 233 1 (∀𝑥𝜑 → [𝑡 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913
This theorem depends on definitions:  df-bi 206  df-sb 2068
This theorem is referenced by:  sbtALT  2072  2stdpc4  2073  spsbim  2075  sbv  2091  sbft  2262  sb2  2480  sbtrt  2519  vexwt  2720  pm13.183  3597  spsbc  3729  nd1  10343  nd2  10344  bj-sbft  34957  bj-ab0  35093  wl-cbvalsbi  35704  sbtd  40176  axfrege58b  41508  pm10.14  41977  pm11.57  42007
  Copyright terms: Public domain W3C validator