| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > stdpc4 | Structured version Visualization version GIF version | ||
| Description: The specialization axiom of standard predicate calculus. It states that if a statement 𝜑 holds for all 𝑥, then it also holds for the specific case of 𝑡 (properly) substituted for 𝑥. Translated to traditional notation, it can be read: "∀𝑥𝜑(𝑥) → 𝜑(𝑡), provided that 𝑡 is free for 𝑥 in 𝜑(𝑥)". Axiom 4 of [Mendelson] p. 69. See also spsbc 3783 and rspsbc 3859. (Contributed by NM, 14-May-1993.) Revise df-sb 2066. (Revised by BJ, 22-Dec-2020.) |
| Ref | Expression |
|---|---|
| stdpc4 | ⊢ (∀𝑥𝜑 → [𝑡 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ala1 1813 | . . . 4 ⊢ (∀𝑥𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
| 2 | 1 | a1d 25 | . . 3 ⊢ (∀𝑥𝜑 → (𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| 3 | 2 | alrimiv 1927 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| 4 | df-sb 2066 | . 2 ⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
| 5 | 3, 4 | sylibr 234 | 1 ⊢ (∀𝑥𝜑 → [𝑡 / 𝑥]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 [wsb 2065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-sb 2066 |
| This theorem is referenced by: sbtALT 2070 2stdpc4 2071 spsbim 2073 sbv 2089 sbft 2271 sb2 2484 sbtrt 2520 vexwt 2719 pm13.183 3650 spsbc 3783 nd1 10606 nd2 10607 bj-sbft 36798 bj-ab0 36931 wl-cbvalsbi 37569 wl-nfsbtv 37600 sbtd 42229 axfrege58b 43899 pm10.14 44358 pm11.57 44388 |
| Copyright terms: Public domain | W3C validator |