MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  stdpc4 Structured version   Visualization version   GIF version

Theorem stdpc4 2499
Description: The specialization axiom of standard predicate calculus. It states that if a statement 𝜑 holds for all 𝑥, then it also holds for the specific case of 𝑦 (properly) substituted for 𝑥. Translated to traditional notation, it can be read: "𝑥𝜑(𝑥) → 𝜑(𝑦), provided that 𝑦 is free for 𝑥 in 𝜑(𝑥)." Axiom 4 of [Mendelson] p. 69. See also spsbc 3600 and rspsbc 3667. (Contributed by NM, 14-May-1993.)
Assertion
Ref Expression
stdpc4 (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑)

Proof of Theorem stdpc4
StepHypRef Expression
1 ala1 1889 . 2 (∀𝑥𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))
2 sb2 2498 . 2 (∀𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑)
31, 2syl 17 1 (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1629  [wsb 2049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-12 2203  ax-13 2408
This theorem depends on definitions:  df-bi 197  df-an 383  df-ex 1853  df-sb 2050
This theorem is referenced by:  2stdpc4  2500  sbft  2526  spsbim  2541  spsbbi  2549  sbt  2566  sbtrt  2567  pm13.183  3495  spsbc  3600  nd1  9609  nd2  9610  bj-vexwt  33176  axfrege58b  38713  pm10.14  39077  pm11.57  39108
  Copyright terms: Public domain W3C validator