Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pm10.53 | Structured version Visualization version GIF version |
Description: Theorem *10.53 in [WhiteheadRussell] p. 155. (Contributed by Andrew Salmon, 24-May-2011.) |
Ref | Expression |
---|---|
pm10.53 | ⊢ (¬ ∃𝑥𝜑 → ∀𝑥(𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.21 123 | . 2 ⊢ (¬ ∃𝑥𝜑 → (∃𝑥𝜑 → ∀𝑥𝜓)) | |
2 | 19.38 1842 | . 2 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (¬ ∃𝑥𝜑 → ∀𝑥(𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-ex 1784 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |