| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pm10.541 | Structured version Visualization version GIF version | ||
| Description: Theorem *10.541 in [WhiteheadRussell] p. 155. (Contributed by Andrew Salmon, 24-May-2011.) |
| Ref | Expression |
|---|---|
| pm10.541 | ⊢ (∀𝑥(𝜑 → (𝜒 ∨ 𝜓)) ↔ (𝜒 ∨ ∀𝑥(𝜑 → 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi2.04 387 | . . . 4 ⊢ ((𝜑 → (¬ 𝜒 → 𝜓)) ↔ (¬ 𝜒 → (𝜑 → 𝜓))) | |
| 2 | 1 | albii 1818 | . . 3 ⊢ (∀𝑥(𝜑 → (¬ 𝜒 → 𝜓)) ↔ ∀𝑥(¬ 𝜒 → (𝜑 → 𝜓))) |
| 3 | 19.21v 1938 | . . 3 ⊢ (∀𝑥(¬ 𝜒 → (𝜑 → 𝜓)) ↔ (¬ 𝜒 → ∀𝑥(𝜑 → 𝜓))) | |
| 4 | 2, 3 | bitri 275 | . 2 ⊢ (∀𝑥(𝜑 → (¬ 𝜒 → 𝜓)) ↔ (¬ 𝜒 → ∀𝑥(𝜑 → 𝜓))) |
| 5 | df-or 848 | . . . 4 ⊢ ((𝜒 ∨ 𝜓) ↔ (¬ 𝜒 → 𝜓)) | |
| 6 | 5 | imbi2i 336 | . . 3 ⊢ ((𝜑 → (𝜒 ∨ 𝜓)) ↔ (𝜑 → (¬ 𝜒 → 𝜓))) |
| 7 | 6 | albii 1818 | . 2 ⊢ (∀𝑥(𝜑 → (𝜒 ∨ 𝜓)) ↔ ∀𝑥(𝜑 → (¬ 𝜒 → 𝜓))) |
| 8 | df-or 848 | . 2 ⊢ ((𝜒 ∨ ∀𝑥(𝜑 → 𝜓)) ↔ (¬ 𝜒 → ∀𝑥(𝜑 → 𝜓))) | |
| 9 | 4, 7, 8 | 3bitr4i 303 | 1 ⊢ (∀𝑥(𝜑 → (𝜒 ∨ 𝜓)) ↔ (𝜒 ∨ ∀𝑥(𝜑 → 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 ∀wal 1537 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1779 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |