Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pm10.541 | Structured version Visualization version GIF version |
Description: Theorem *10.541 in [WhiteheadRussell] p. 155. (Contributed by Andrew Salmon, 24-May-2011.) |
Ref | Expression |
---|---|
pm10.541 | ⊢ (∀𝑥(𝜑 → (𝜒 ∨ 𝜓)) ↔ (𝜒 ∨ ∀𝑥(𝜑 → 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi2.04 388 | . . . 4 ⊢ ((𝜑 → (¬ 𝜒 → 𝜓)) ↔ (¬ 𝜒 → (𝜑 → 𝜓))) | |
2 | 1 | albii 1823 | . . 3 ⊢ (∀𝑥(𝜑 → (¬ 𝜒 → 𝜓)) ↔ ∀𝑥(¬ 𝜒 → (𝜑 → 𝜓))) |
3 | 19.21v 1943 | . . 3 ⊢ (∀𝑥(¬ 𝜒 → (𝜑 → 𝜓)) ↔ (¬ 𝜒 → ∀𝑥(𝜑 → 𝜓))) | |
4 | 2, 3 | bitri 274 | . 2 ⊢ (∀𝑥(𝜑 → (¬ 𝜒 → 𝜓)) ↔ (¬ 𝜒 → ∀𝑥(𝜑 → 𝜓))) |
5 | df-or 844 | . . . 4 ⊢ ((𝜒 ∨ 𝜓) ↔ (¬ 𝜒 → 𝜓)) | |
6 | 5 | imbi2i 335 | . . 3 ⊢ ((𝜑 → (𝜒 ∨ 𝜓)) ↔ (𝜑 → (¬ 𝜒 → 𝜓))) |
7 | 6 | albii 1823 | . 2 ⊢ (∀𝑥(𝜑 → (𝜒 ∨ 𝜓)) ↔ ∀𝑥(𝜑 → (¬ 𝜒 → 𝜓))) |
8 | df-or 844 | . 2 ⊢ ((𝜒 ∨ ∀𝑥(𝜑 → 𝜓)) ↔ (¬ 𝜒 → ∀𝑥(𝜑 → 𝜓))) | |
9 | 4, 7, 8 | 3bitr4i 302 | 1 ⊢ (∀𝑥(𝜑 → (𝜒 ∨ 𝜓)) ↔ (𝜒 ∨ ∀𝑥(𝜑 → 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∨ wo 843 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-or 844 df-ex 1784 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |