Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.38 | Structured version Visualization version GIF version |
Description: Theorem 19.38 of [Margaris] p. 90. The converse holds under non-freeness conditions, see 19.38a 1842 and 19.38b 1843. (Contributed by NM, 12-Mar-1993.) Allow a shortening of 19.21t 2205. (Revised by Wolf Lammen, 2-Jan-2018.) |
Ref | Expression |
---|---|
19.38 | ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alnex 1784 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
2 | pm2.21 123 | . . . 4 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
3 | 2 | alimi 1814 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 → ∀𝑥(𝜑 → 𝜓)) |
4 | 1, 3 | sylbir 238 | . 2 ⊢ (¬ ∃𝑥𝜑 → ∀𝑥(𝜑 → 𝜓)) |
5 | ala1 1816 | . 2 ⊢ (∀𝑥𝜓 → ∀𝑥(𝜑 → 𝜓)) | |
6 | 4, 5 | ja 189 | 1 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 210 df-ex 1783 |
This theorem is referenced by: 19.38a 1842 19.38b 1843 nfimd 1896 19.21v 1941 19.23v 1944 bj-nfimexal 34346 bj-nfimt 34358 bj-wnf1 34438 bj-subst 34442 bj-nnfim 34464 bj-19.21t 34487 bj-19.23t 34488 bj-19.21t0 34542 pm10.53 41436 |
Copyright terms: Public domain | W3C validator |