|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 19.38 | Structured version Visualization version GIF version | ||
| Description: Theorem 19.38 of [Margaris] p. 90. The converse holds under nonfreeness conditions, see 19.38a 1839 and 19.38b 1840. (Contributed by NM, 12-Mar-1993.) Allow a shortening of 19.21t 2205. (Revised by Wolf Lammen, 2-Jan-2018.) | 
| Ref | Expression | 
|---|---|
| 19.38 | ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | alnex 1780 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
| 2 | pm2.21 123 | . . . 4 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
| 3 | 2 | alimi 1810 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 → ∀𝑥(𝜑 → 𝜓)) | 
| 4 | 1, 3 | sylbir 235 | . 2 ⊢ (¬ ∃𝑥𝜑 → ∀𝑥(𝜑 → 𝜓)) | 
| 5 | ala1 1812 | . 2 ⊢ (∀𝑥𝜓 → ∀𝑥(𝜑 → 𝜓)) | |
| 6 | 4, 5 | ja 186 | 1 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 ∃wex 1778 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 | 
| This theorem depends on definitions: df-bi 207 df-ex 1779 | 
| This theorem is referenced by: 19.38a 1839 19.38b 1840 nfimd 1893 19.21v 1938 19.23v 1941 bj-nfimexal 36628 bj-nfimt 36640 bj-wnf1 36719 bj-substax12 36723 bj-nnfim 36748 bj-19.21t 36771 bj-19.23t 36772 bj-19.21t0 36832 pm10.53 44390 | 
| Copyright terms: Public domain | W3C validator |