| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pm10.52 | Structured version Visualization version GIF version | ||
| Description: Theorem *10.52 in [WhiteheadRussell] p. 155. (Contributed by Andrew Salmon, 24-May-2011.) |
| Ref | Expression |
|---|---|
| pm10.52 | ⊢ (∃𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.23v 1942 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) | |
| 2 | pm5.5 361 | . 2 ⊢ (∃𝑥𝜑 → ((∃𝑥𝜑 → 𝜓) ↔ 𝜓)) | |
| 3 | 1, 2 | bitrid 283 | 1 ⊢ (∃𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |