Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pm11.63 | Structured version Visualization version GIF version |
Description: Theorem *11.63 in [WhiteheadRussell] p. 166. (Contributed by Andrew Salmon, 24-May-2011.) |
Ref | Expression |
---|---|
pm11.63 | ⊢ (¬ ∃𝑥∃𝑦𝜑 → ∀𝑥∀𝑦(𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nexaln 1833 | . 2 ⊢ (¬ ∃𝑥∃𝑦𝜑 ↔ ∀𝑥∀𝑦 ¬ 𝜑) | |
2 | pm2.21 123 | . . 3 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
3 | 2 | 2alimi 1816 | . 2 ⊢ (∀𝑥∀𝑦 ¬ 𝜑 → ∀𝑥∀𝑦(𝜑 → 𝜓)) |
4 | 1, 3 | sylbi 216 | 1 ⊢ (¬ ∃𝑥∃𝑦𝜑 → ∀𝑥∀𝑦(𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-ex 1784 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |