Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pm11.63 Structured version   Visualization version   GIF version

Theorem pm11.63 42013
Description: Theorem *11.63 in [WhiteheadRussell] p. 166. (Contributed by Andrew Salmon, 24-May-2011.)
Assertion
Ref Expression
pm11.63 (¬ ∃𝑥𝑦𝜑 → ∀𝑥𝑦(𝜑𝜓))

Proof of Theorem pm11.63
StepHypRef Expression
1 2nexaln 1832 . 2 (¬ ∃𝑥𝑦𝜑 ↔ ∀𝑥𝑦 ¬ 𝜑)
2 pm2.21 123 . . 3 𝜑 → (𝜑𝜓))
322alimi 1815 . 2 (∀𝑥𝑦 ¬ 𝜑 → ∀𝑥𝑦(𝜑𝜓))
41, 3sylbi 216 1 (¬ ∃𝑥𝑦𝜑 → ∀𝑥𝑦(𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1537  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812
This theorem depends on definitions:  df-bi 206  df-ex 1783
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator