![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2nexaln | Structured version Visualization version GIF version |
Description: Theorem *11.25 in [WhiteheadRussell] p. 160. (Contributed by Andrew Salmon, 24-May-2011.) |
Ref | Expression |
---|---|
2nexaln | ⊢ (¬ ∃𝑥∃𝑦𝜑 ↔ ∀𝑥∀𝑦 ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2exnaln 1827 | . . 3 ⊢ (∃𝑥∃𝑦𝜑 ↔ ¬ ∀𝑥∀𝑦 ¬ 𝜑) | |
2 | 1 | bicomi 224 | . 2 ⊢ (¬ ∀𝑥∀𝑦 ¬ 𝜑 ↔ ∃𝑥∃𝑦𝜑) |
3 | 2 | con1bii 356 | 1 ⊢ (¬ ∃𝑥∃𝑦𝜑 ↔ ∀𝑥∀𝑦 ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1535 ∃wex 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-ex 1778 |
This theorem is referenced by: cbvex2v 2350 cbvex2 2420 2mo 2651 bj-alcomexcom 36646 pm11.63 44364 fun2dmnopgexmpl 47199 spr0nelg 47350 |
Copyright terms: Public domain | W3C validator |