Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2nexaln | Structured version Visualization version GIF version |
Description: Theorem *11.25 in [WhiteheadRussell] p. 160. (Contributed by Andrew Salmon, 24-May-2011.) |
Ref | Expression |
---|---|
2nexaln | ⊢ (¬ ∃𝑥∃𝑦𝜑 ↔ ∀𝑥∀𝑦 ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2exnaln 1832 | . . 3 ⊢ (∃𝑥∃𝑦𝜑 ↔ ¬ ∀𝑥∀𝑦 ¬ 𝜑) | |
2 | 1 | bicomi 223 | . 2 ⊢ (¬ ∀𝑥∀𝑦 ¬ 𝜑 ↔ ∃𝑥∃𝑦𝜑) |
3 | 2 | con1bii 356 | 1 ⊢ (¬ ∃𝑥∃𝑦𝜑 ↔ ∀𝑥∀𝑦 ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wal 1537 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-ex 1784 |
This theorem is referenced by: cbvex2v 2344 cbvex2 2412 2mo 2650 bj-alcomexcom 34789 pm11.63 41902 fun2dmnopgexmpl 44663 spr0nelg 44816 |
Copyright terms: Public domain | W3C validator |