MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2nexaln Structured version   Visualization version   GIF version

Theorem 2nexaln 1830
Description: Theorem *11.25 in [WhiteheadRussell] p. 160. (Contributed by Andrew Salmon, 24-May-2011.)
Assertion
Ref Expression
2nexaln (¬ ∃𝑥𝑦𝜑 ↔ ∀𝑥𝑦 ¬ 𝜑)

Proof of Theorem 2nexaln
StepHypRef Expression
1 2exnaln 1829 . . 3 (∃𝑥𝑦𝜑 ↔ ¬ ∀𝑥𝑦 ¬ 𝜑)
21bicomi 224 . 2 (¬ ∀𝑥𝑦 ¬ 𝜑 ↔ ∃𝑥𝑦𝜑)
32con1bii 356 1 (¬ ∃𝑥𝑦𝜑 ↔ ∀𝑥𝑦 ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wal 1538  wex 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-ex 1780
This theorem is referenced by:  cbvex2v  2346  cbvex2  2417  2mo  2648  bj-alcomexcom  36681  pm11.63  44414  fun2dmnopgexmpl  47296  spr0nelg  47463
  Copyright terms: Public domain W3C validator