|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 2nexaln | Structured version Visualization version GIF version | ||
| Description: Theorem *11.25 in [WhiteheadRussell] p. 160. (Contributed by Andrew Salmon, 24-May-2011.) | 
| Ref | Expression | 
|---|---|
| 2nexaln | ⊢ (¬ ∃𝑥∃𝑦𝜑 ↔ ∀𝑥∀𝑦 ¬ 𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 2exnaln 1829 | . . 3 ⊢ (∃𝑥∃𝑦𝜑 ↔ ¬ ∀𝑥∀𝑦 ¬ 𝜑) | |
| 2 | 1 | bicomi 224 | . 2 ⊢ (¬ ∀𝑥∀𝑦 ¬ 𝜑 ↔ ∃𝑥∃𝑦𝜑) | 
| 3 | 2 | con1bii 356 | 1 ⊢ (¬ ∃𝑥∃𝑦𝜑 ↔ ∀𝑥∀𝑦 ¬ 𝜑) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1538 ∃wex 1779 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 | 
| This theorem depends on definitions: df-bi 207 df-ex 1780 | 
| This theorem is referenced by: cbvex2v 2346 cbvex2 2417 2mo 2648 bj-alcomexcom 36681 pm11.63 44414 fun2dmnopgexmpl 47296 spr0nelg 47463 | 
| Copyright terms: Public domain | W3C validator |