Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pm11.7 Structured version   Visualization version   GIF version

Theorem pm11.7 41903
Description: Theorem *11.7 in [WhiteheadRussell] p. 166. (Contributed by Andrew Salmon, 24-May-2011.)
Assertion
Ref Expression
pm11.7 (∃𝑥𝑦(𝜑𝜑) ↔ ∃𝑥𝑦𝜑)

Proof of Theorem pm11.7
StepHypRef Expression
1 oridm 901 . 2 ((𝜑𝜑) ↔ 𝜑)
212exbii 1852 1 (∃𝑥𝑦(𝜑𝜑) ↔ ∃𝑥𝑦𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wo 843  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813
This theorem depends on definitions:  df-bi 206  df-or 844  df-ex 1784
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator