MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsdir2 Structured version   Visualization version   GIF version

Theorem lgsdir2 25839
Description: The Legendre symbol is completely multiplicative at 2. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsdir2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 · 𝐵) /L 2) = ((𝐴 /L 2) · (𝐵 /L 2)))

Proof of Theorem lgsdir2
StepHypRef Expression
1 0cn 10627 . . . . . 6 0 ∈ ℂ
2 ax-1cn 10589 . . . . . . 7 1 ∈ ℂ
3 neg1cn 11745 . . . . . . 7 -1 ∈ ℂ
42, 3ifcli 4516 . . . . . 6 if((𝐵 mod 8) ∈ {1, 7}, 1, -1) ∈ ℂ
51, 4ifcli 4516 . . . . 5 if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) ∈ ℂ
65mul02i 10823 . . . 4 (0 · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))) = 0
7 iftrue 4476 . . . . . 6 (2 ∥ 𝐴 → if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) = 0)
87adantl 482 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥ 𝐴) → if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) = 0)
98oveq1d 7165 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥ 𝐴) → (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))) = (0 · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))))
10 2z 12008 . . . . . . 7 2 ∈ ℤ
11 dvdsmultr1 15642 . . . . . . 7 ((2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 ∥ 𝐴 → 2 ∥ (𝐴 · 𝐵)))
1210, 11mp3an1 1441 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 ∥ 𝐴 → 2 ∥ (𝐴 · 𝐵)))
1312imp 407 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥ 𝐴) → 2 ∥ (𝐴 · 𝐵))
1413iftrued 4478 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥ 𝐴) → if(2 ∥ (𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1)) = 0)
156, 9, 143eqtr4a 2887 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥ 𝐴) → (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))) = if(2 ∥ (𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1)))
162, 3ifcli 4516 . . . . . 6 if((𝐴 mod 8) ∈ {1, 7}, 1, -1) ∈ ℂ
171, 16ifcli 4516 . . . . 5 if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) ∈ ℂ
1817mul01i 10824 . . . 4 (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · 0) = 0
19 iftrue 4476 . . . . . 6 (2 ∥ 𝐵 → if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = 0)
2019adantl 482 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥ 𝐵) → if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = 0)
2120oveq2d 7166 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥ 𝐵) → (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))) = (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · 0))
22 dvdsmultr2 15644 . . . . . . 7 ((2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 ∥ 𝐵 → 2 ∥ (𝐴 · 𝐵)))
2310, 22mp3an1 1441 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 ∥ 𝐵 → 2 ∥ (𝐴 · 𝐵)))
2423imp 407 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥ 𝐵) → 2 ∥ (𝐴 · 𝐵))
2524iftrued 4478 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥ 𝐵) → if(2 ∥ (𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1)) = 0)
2618, 21, 253eqtr4a 2887 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥ 𝐵) → (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))) = if(2 ∥ (𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1)))
274mulid2i 10640 . . . . . 6 (1 · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = if((𝐵 mod 8) ∈ {1, 7}, 1, -1)
28 iftrue 4476 . . . . . . . 8 ((𝐴 mod 8) ∈ {1, 7} → if((𝐴 mod 8) ∈ {1, 7}, 1, -1) = 1)
2928adantl 482 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐴 mod 8) ∈ {1, 7}) → if((𝐴 mod 8) ∈ {1, 7}, 1, -1) = 1)
3029oveq1d 7165 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐴 mod 8) ∈ {1, 7}) → (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = (1 · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)))
31 lgsdir2lem4 25837 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) ∈ {1, 7}) → (((𝐴 · 𝐵) mod 8) ∈ {1, 7} ↔ (𝐵 mod 8) ∈ {1, 7}))
3231adantlr 711 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐴 mod 8) ∈ {1, 7}) → (((𝐴 · 𝐵) mod 8) ∈ {1, 7} ↔ (𝐵 mod 8) ∈ {1, 7}))
3332ifbid 4492 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐴 mod 8) ∈ {1, 7}) → if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1) = if((𝐵 mod 8) ∈ {1, 7}, 1, -1))
3427, 30, 333eqtr4a 2887 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐴 mod 8) ∈ {1, 7}) → (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1))
3516mulid1i 10639 . . . . . 6 (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · 1) = if((𝐴 mod 8) ∈ {1, 7}, 1, -1)
36 iftrue 4476 . . . . . . . 8 ((𝐵 mod 8) ∈ {1, 7} → if((𝐵 mod 8) ∈ {1, 7}, 1, -1) = 1)
3736adantl 482 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐵 mod 8) ∈ {1, 7}) → if((𝐵 mod 8) ∈ {1, 7}, 1, -1) = 1)
3837oveq2d 7166 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐵 mod 8) ∈ {1, 7}) → (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · 1))
39 zcn 11980 . . . . . . . . . . . 12 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
40 zcn 11980 . . . . . . . . . . . 12 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
41 mulcom 10617 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
4239, 40, 41syl2an 595 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
4342ad2antrr 722 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐵 mod 8) ∈ {1, 7}) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
4443oveq1d 7165 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐵 mod 8) ∈ {1, 7}) → ((𝐴 · 𝐵) mod 8) = ((𝐵 · 𝐴) mod 8))
4544eleq1d 2902 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐵 mod 8) ∈ {1, 7}) → (((𝐴 · 𝐵) mod 8) ∈ {1, 7} ↔ ((𝐵 · 𝐴) mod 8) ∈ {1, 7}))
46 lgsdir2lem4 25837 . . . . . . . . . 10 (((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ (𝐵 mod 8) ∈ {1, 7}) → (((𝐵 · 𝐴) mod 8) ∈ {1, 7} ↔ (𝐴 mod 8) ∈ {1, 7}))
4746ancom1s 649 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐵 mod 8) ∈ {1, 7}) → (((𝐵 · 𝐴) mod 8) ∈ {1, 7} ↔ (𝐴 mod 8) ∈ {1, 7}))
4847adantlr 711 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐵 mod 8) ∈ {1, 7}) → (((𝐵 · 𝐴) mod 8) ∈ {1, 7} ↔ (𝐴 mod 8) ∈ {1, 7}))
4945, 48bitrd 280 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐵 mod 8) ∈ {1, 7}) → (((𝐴 · 𝐵) mod 8) ∈ {1, 7} ↔ (𝐴 mod 8) ∈ {1, 7}))
5049ifbid 4492 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐵 mod 8) ∈ {1, 7}) → if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1) = if((𝐴 mod 8) ∈ {1, 7}, 1, -1))
5135, 38, 503eqtr4a 2887 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐵 mod 8) ∈ {1, 7}) → (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1))
52 neg1mulneg1e1 11844 . . . . . 6 (-1 · -1) = 1
53 iffalse 4479 . . . . . . . 8 (¬ (𝐴 mod 8) ∈ {1, 7} → if((𝐴 mod 8) ∈ {1, 7}, 1, -1) = -1)
54 iffalse 4479 . . . . . . . 8 (¬ (𝐵 mod 8) ∈ {1, 7} → if((𝐵 mod 8) ∈ {1, 7}, 1, -1) = -1)
5553, 54oveqan12d 7169 . . . . . . 7 ((¬ (𝐴 mod 8) ∈ {1, 7} ∧ ¬ (𝐵 mod 8) ∈ {1, 7}) → (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = (-1 · -1))
5655adantl 482 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (¬ (𝐴 mod 8) ∈ {1, 7} ∧ ¬ (𝐵 mod 8) ∈ {1, 7})) → (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = (-1 · -1))
57 lgsdir2lem3 25836 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))
5857ad2ant2r 743 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))
59 elun 4129 . . . . . . . . . . 11 ((𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}) ↔ ((𝐴 mod 8) ∈ {1, 7} ∨ (𝐴 mod 8) ∈ {3, 5}))
6058, 59sylib 219 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) → ((𝐴 mod 8) ∈ {1, 7} ∨ (𝐴 mod 8) ∈ {3, 5}))
6160orcanai 998 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ ¬ (𝐴 mod 8) ∈ {1, 7}) → (𝐴 mod 8) ∈ {3, 5})
62 lgsdir2lem3 25836 . . . . . . . . . . . 12 ((𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝐵) → (𝐵 mod 8) ∈ ({1, 7} ∪ {3, 5}))
6362ad2ant2l 742 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) → (𝐵 mod 8) ∈ ({1, 7} ∪ {3, 5}))
64 elun 4129 . . . . . . . . . . 11 ((𝐵 mod 8) ∈ ({1, 7} ∪ {3, 5}) ↔ ((𝐵 mod 8) ∈ {1, 7} ∨ (𝐵 mod 8) ∈ {3, 5}))
6563, 64sylib 219 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) → ((𝐵 mod 8) ∈ {1, 7} ∨ (𝐵 mod 8) ∈ {3, 5}))
6665orcanai 998 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ ¬ (𝐵 mod 8) ∈ {1, 7}) → (𝐵 mod 8) ∈ {3, 5})
6761, 66anim12dan 618 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (¬ (𝐴 mod 8) ∈ {1, 7} ∧ ¬ (𝐵 mod 8) ∈ {1, 7})) → ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5}))
68 lgsdir2lem5 25838 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) → ((𝐴 · 𝐵) mod 8) ∈ {1, 7})
6968adantlr 711 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) → ((𝐴 · 𝐵) mod 8) ∈ {1, 7})
7067, 69syldan 591 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (¬ (𝐴 mod 8) ∈ {1, 7} ∧ ¬ (𝐵 mod 8) ∈ {1, 7})) → ((𝐴 · 𝐵) mod 8) ∈ {1, 7})
7170iftrued 4478 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (¬ (𝐴 mod 8) ∈ {1, 7} ∧ ¬ (𝐵 mod 8) ∈ {1, 7})) → if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1) = 1)
7252, 56, 713eqtr4a 2887 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (¬ (𝐴 mod 8) ∈ {1, 7} ∧ ¬ (𝐵 mod 8) ∈ {1, 7})) → (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1))
7334, 51, 72pm2.61ddan 810 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) → (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1))
74 iffalse 4479 . . . . . 6 (¬ 2 ∥ 𝐴 → if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) = if((𝐴 mod 8) ∈ {1, 7}, 1, -1))
75 iffalse 4479 . . . . . 6 (¬ 2 ∥ 𝐵 → if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = if((𝐵 mod 8) ∈ {1, 7}, 1, -1))
7674, 75oveqan12d 7169 . . . . 5 ((¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵) → (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))) = (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)))
7776adantl 482 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) → (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))) = (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)))
78 ioran 979 . . . . . 6 (¬ (2 ∥ 𝐴 ∨ 2 ∥ 𝐵) ↔ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵))
79 2prm 16031 . . . . . . . . 9 2 ∈ ℙ
80 euclemma 16052 . . . . . . . . 9 ((2 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 ∥ (𝐴 · 𝐵) ↔ (2 ∥ 𝐴 ∨ 2 ∥ 𝐵)))
8179, 80mp3an1 1441 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 ∥ (𝐴 · 𝐵) ↔ (2 ∥ 𝐴 ∨ 2 ∥ 𝐵)))
8281notbid 319 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (¬ 2 ∥ (𝐴 · 𝐵) ↔ ¬ (2 ∥ 𝐴 ∨ 2 ∥ 𝐵)))
8382biimpar 478 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (2 ∥ 𝐴 ∨ 2 ∥ 𝐵)) → ¬ 2 ∥ (𝐴 · 𝐵))
8478, 83sylan2br 594 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) → ¬ 2 ∥ (𝐴 · 𝐵))
85 iffalse 4479 . . . . 5 (¬ 2 ∥ (𝐴 · 𝐵) → if(2 ∥ (𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1)) = if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1))
8684, 85syl 17 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) → if(2 ∥ (𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1)) = if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1))
8773, 77, 863eqtr4d 2871 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) → (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))) = if(2 ∥ (𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1)))
8815, 26, 87pm2.61ddan 810 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))) = if(2 ∥ (𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1)))
89 lgs2 25823 . . 3 (𝐴 ∈ ℤ → (𝐴 /L 2) = if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)))
90 lgs2 25823 . . 3 (𝐵 ∈ ℤ → (𝐵 /L 2) = if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1)))
9189, 90oveqan12d 7169 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 /L 2) · (𝐵 /L 2)) = (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))))
92 zmulcl 12025 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 · 𝐵) ∈ ℤ)
93 lgs2 25823 . . 3 ((𝐴 · 𝐵) ∈ ℤ → ((𝐴 · 𝐵) /L 2) = if(2 ∥ (𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1)))
9492, 93syl 17 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 · 𝐵) /L 2) = if(2 ∥ (𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1)))
9588, 91, 943eqtr4rd 2872 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 · 𝐵) /L 2) = ((𝐴 /L 2) · (𝐵 /L 2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 843   = wceq 1530  wcel 2107  cun 3938  ifcif 4470  {cpr 4566   class class class wbr 5063  (class class class)co 7150  cc 10529  0cc0 10531  1c1 10532   · cmul 10536  -cneg 10865  2c2 11686  3c3 11687  5c5 11689  7c7 11691  8c8 11692  cz 11975   mod cmo 13232  cdvds 15602  cprime 16010   /L clgs 25803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7574  df-1st 7685  df-2nd 7686  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-2o 8099  df-oadd 8102  df-er 8284  df-map 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-dju 9324  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-xnn0 11962  df-z 11976  df-uz 12238  df-q 12343  df-rp 12385  df-fz 12888  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13425  df-hash 13686  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-dvds 15603  df-gcd 15839  df-prm 16011  df-phi 16098  df-pc 16169  df-lgs 25804
This theorem is referenced by:  lgsdirprm  25840
  Copyright terms: Public domain W3C validator