Proof of Theorem lgsdir2
Step | Hyp | Ref
| Expression |
1 | | 0cn 10898 |
. . . . . 6
⊢ 0 ∈
ℂ |
2 | | ax-1cn 10860 |
. . . . . . 7
⊢ 1 ∈
ℂ |
3 | | neg1cn 12017 |
. . . . . . 7
⊢ -1 ∈
ℂ |
4 | 2, 3 | ifcli 4503 |
. . . . . 6
⊢ if((𝐵 mod 8) ∈ {1, 7}, 1, -1)
∈ ℂ |
5 | 1, 4 | ifcli 4503 |
. . . . 5
⊢ if(2
∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))
∈ ℂ |
6 | 5 | mul02i 11094 |
. . . 4
⊢ (0
· if(2 ∥ 𝐵, 0,
if((𝐵 mod 8) ∈ {1, 7},
1, -1))) = 0 |
7 | | iftrue 4462 |
. . . . . 6
⊢ (2
∥ 𝐴 → if(2
∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) =
0) |
8 | 7 | adantl 481 |
. . . . 5
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥
𝐴) → if(2 ∥
𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) =
0) |
9 | 8 | oveq1d 7270 |
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥
𝐴) → (if(2 ∥
𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · if(2
∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1)))
= (0 · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1,
-1)))) |
10 | | 2z 12282 |
. . . . . . 7
⊢ 2 ∈
ℤ |
11 | | dvdsmultr1 15933 |
. . . . . . 7
⊢ ((2
∈ ℤ ∧ 𝐴
∈ ℤ ∧ 𝐵
∈ ℤ) → (2 ∥ 𝐴 → 2 ∥ (𝐴 · 𝐵))) |
12 | 10, 11 | mp3an1 1446 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2
∥ 𝐴 → 2 ∥
(𝐴 · 𝐵))) |
13 | 12 | imp 406 |
. . . . 5
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥
𝐴) → 2 ∥ (𝐴 · 𝐵)) |
14 | 13 | iftrued 4464 |
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥
𝐴) → if(2 ∥
(𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1)) =
0) |
15 | 6, 9, 14 | 3eqtr4a 2805 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥
𝐴) → (if(2 ∥
𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · if(2
∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1)))
= if(2 ∥ (𝐴 ·
𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1,
-1))) |
16 | 2, 3 | ifcli 4503 |
. . . . . 6
⊢ if((𝐴 mod 8) ∈ {1, 7}, 1, -1)
∈ ℂ |
17 | 1, 16 | ifcli 4503 |
. . . . 5
⊢ if(2
∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1))
∈ ℂ |
18 | 17 | mul01i 11095 |
. . . 4
⊢ (if(2
∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1))
· 0) = 0 |
19 | | iftrue 4462 |
. . . . . 6
⊢ (2
∥ 𝐵 → if(2
∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) =
0) |
20 | 19 | adantl 481 |
. . . . 5
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥
𝐵) → if(2 ∥
𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) =
0) |
21 | 20 | oveq2d 7271 |
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥
𝐵) → (if(2 ∥
𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · if(2
∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1)))
= (if(2 ∥ 𝐴, 0,
if((𝐴 mod 8) ∈ {1, 7},
1, -1)) · 0)) |
22 | | dvdsmultr2 15935 |
. . . . . . 7
⊢ ((2
∈ ℤ ∧ 𝐴
∈ ℤ ∧ 𝐵
∈ ℤ) → (2 ∥ 𝐵 → 2 ∥ (𝐴 · 𝐵))) |
23 | 10, 22 | mp3an1 1446 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2
∥ 𝐵 → 2 ∥
(𝐴 · 𝐵))) |
24 | 23 | imp 406 |
. . . . 5
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥
𝐵) → 2 ∥ (𝐴 · 𝐵)) |
25 | 24 | iftrued 4464 |
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥
𝐵) → if(2 ∥
(𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1)) =
0) |
26 | 18, 21, 25 | 3eqtr4a 2805 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥
𝐵) → (if(2 ∥
𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · if(2
∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1)))
= if(2 ∥ (𝐴 ·
𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1,
-1))) |
27 | 4 | mulid2i 10911 |
. . . . . 6
⊢ (1
· if((𝐵 mod 8)
∈ {1, 7}, 1, -1)) = if((𝐵 mod 8) ∈ {1, 7}, 1,
-1) |
28 | | iftrue 4462 |
. . . . . . . 8
⊢ ((𝐴 mod 8) ∈ {1, 7} →
if((𝐴 mod 8) ∈ {1, 7},
1, -1) = 1) |
29 | 28 | adantl 481 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2
∥ 𝐴 ∧ ¬ 2
∥ 𝐵)) ∧ (𝐴 mod 8) ∈ {1, 7}) →
if((𝐴 mod 8) ∈ {1, 7},
1, -1) = 1) |
30 | 29 | oveq1d 7270 |
. . . . . 6
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2
∥ 𝐴 ∧ ¬ 2
∥ 𝐵)) ∧ (𝐴 mod 8) ∈ {1, 7}) →
(if((𝐴 mod 8) ∈ {1,
7}, 1, -1) · if((𝐵
mod 8) ∈ {1, 7}, 1, -1)) = (1 · if((𝐵 mod 8) ∈ {1, 7}, 1,
-1))) |
31 | | lgsdir2lem4 26381 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) ∈ {1, 7}) →
(((𝐴 · 𝐵) mod 8) ∈ {1, 7} ↔
(𝐵 mod 8) ∈ {1,
7})) |
32 | 31 | adantlr 711 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2
∥ 𝐴 ∧ ¬ 2
∥ 𝐵)) ∧ (𝐴 mod 8) ∈ {1, 7}) →
(((𝐴 · 𝐵) mod 8) ∈ {1, 7} ↔
(𝐵 mod 8) ∈ {1,
7})) |
33 | 32 | ifbid 4479 |
. . . . . 6
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2
∥ 𝐴 ∧ ¬ 2
∥ 𝐵)) ∧ (𝐴 mod 8) ∈ {1, 7}) →
if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1) =
if((𝐵 mod 8) ∈ {1, 7},
1, -1)) |
34 | 27, 30, 33 | 3eqtr4a 2805 |
. . . . 5
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2
∥ 𝐴 ∧ ¬ 2
∥ 𝐵)) ∧ (𝐴 mod 8) ∈ {1, 7}) →
(if((𝐴 mod 8) ∈ {1,
7}, 1, -1) · if((𝐵
mod 8) ∈ {1, 7}, 1, -1)) = if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1,
-1)) |
35 | 16 | mulid1i 10910 |
. . . . . 6
⊢
(if((𝐴 mod 8) ∈
{1, 7}, 1, -1) · 1) = if((𝐴 mod 8) ∈ {1, 7}, 1,
-1) |
36 | | iftrue 4462 |
. . . . . . . 8
⊢ ((𝐵 mod 8) ∈ {1, 7} →
if((𝐵 mod 8) ∈ {1, 7},
1, -1) = 1) |
37 | 36 | adantl 481 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2
∥ 𝐴 ∧ ¬ 2
∥ 𝐵)) ∧ (𝐵 mod 8) ∈ {1, 7}) →
if((𝐵 mod 8) ∈ {1, 7},
1, -1) = 1) |
38 | 37 | oveq2d 7271 |
. . . . . 6
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2
∥ 𝐴 ∧ ¬ 2
∥ 𝐵)) ∧ (𝐵 mod 8) ∈ {1, 7}) →
(if((𝐴 mod 8) ∈ {1,
7}, 1, -1) · if((𝐵
mod 8) ∈ {1, 7}, 1, -1)) = (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) ·
1)) |
39 | | zcn 12254 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℤ → 𝐴 ∈
ℂ) |
40 | | zcn 12254 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ ℤ → 𝐵 ∈
ℂ) |
41 | | mulcom 10888 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
42 | 39, 40, 41 | syl2an 595 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
43 | 42 | ad2antrr 722 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2
∥ 𝐴 ∧ ¬ 2
∥ 𝐵)) ∧ (𝐵 mod 8) ∈ {1, 7}) →
(𝐴 · 𝐵) = (𝐵 · 𝐴)) |
44 | 43 | oveq1d 7270 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2
∥ 𝐴 ∧ ¬ 2
∥ 𝐵)) ∧ (𝐵 mod 8) ∈ {1, 7}) →
((𝐴 · 𝐵) mod 8) = ((𝐵 · 𝐴) mod 8)) |
45 | 44 | eleq1d 2823 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2
∥ 𝐴 ∧ ¬ 2
∥ 𝐵)) ∧ (𝐵 mod 8) ∈ {1, 7}) →
(((𝐴 · 𝐵) mod 8) ∈ {1, 7} ↔
((𝐵 · 𝐴) mod 8) ∈ {1,
7})) |
46 | | lgsdir2lem4 26381 |
. . . . . . . . . 10
⊢ (((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ (𝐵 mod 8) ∈ {1, 7}) →
(((𝐵 · 𝐴) mod 8) ∈ {1, 7} ↔
(𝐴 mod 8) ∈ {1,
7})) |
47 | 46 | ancom1s 649 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐵 mod 8) ∈ {1, 7}) →
(((𝐵 · 𝐴) mod 8) ∈ {1, 7} ↔
(𝐴 mod 8) ∈ {1,
7})) |
48 | 47 | adantlr 711 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2
∥ 𝐴 ∧ ¬ 2
∥ 𝐵)) ∧ (𝐵 mod 8) ∈ {1, 7}) →
(((𝐵 · 𝐴) mod 8) ∈ {1, 7} ↔
(𝐴 mod 8) ∈ {1,
7})) |
49 | 45, 48 | bitrd 278 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2
∥ 𝐴 ∧ ¬ 2
∥ 𝐵)) ∧ (𝐵 mod 8) ∈ {1, 7}) →
(((𝐴 · 𝐵) mod 8) ∈ {1, 7} ↔
(𝐴 mod 8) ∈ {1,
7})) |
50 | 49 | ifbid 4479 |
. . . . . 6
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2
∥ 𝐴 ∧ ¬ 2
∥ 𝐵)) ∧ (𝐵 mod 8) ∈ {1, 7}) →
if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1) =
if((𝐴 mod 8) ∈ {1, 7},
1, -1)) |
51 | 35, 38, 50 | 3eqtr4a 2805 |
. . . . 5
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2
∥ 𝐴 ∧ ¬ 2
∥ 𝐵)) ∧ (𝐵 mod 8) ∈ {1, 7}) →
(if((𝐴 mod 8) ∈ {1,
7}, 1, -1) · if((𝐵
mod 8) ∈ {1, 7}, 1, -1)) = if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1,
-1)) |
52 | | neg1mulneg1e1 12116 |
. . . . . 6
⊢ (-1
· -1) = 1 |
53 | | iffalse 4465 |
. . . . . . . 8
⊢ (¬
(𝐴 mod 8) ∈ {1, 7}
→ if((𝐴 mod 8) ∈
{1, 7}, 1, -1) = -1) |
54 | | iffalse 4465 |
. . . . . . . 8
⊢ (¬
(𝐵 mod 8) ∈ {1, 7}
→ if((𝐵 mod 8) ∈
{1, 7}, 1, -1) = -1) |
55 | 53, 54 | oveqan12d 7274 |
. . . . . . 7
⊢ ((¬
(𝐴 mod 8) ∈ {1, 7}
∧ ¬ (𝐵 mod 8)
∈ {1, 7}) → (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) ·
if((𝐵 mod 8) ∈ {1, 7},
1, -1)) = (-1 · -1)) |
56 | 55 | adantl 481 |
. . . . . 6
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2
∥ 𝐴 ∧ ¬ 2
∥ 𝐵)) ∧ (¬
(𝐴 mod 8) ∈ {1, 7}
∧ ¬ (𝐵 mod 8)
∈ {1, 7})) → (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) ·
if((𝐵 mod 8) ∈ {1, 7},
1, -1)) = (-1 · -1)) |
57 | | lgsdir2lem3 26380 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℤ ∧ ¬ 2
∥ 𝐴) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3,
5})) |
58 | 57 | ad2ant2r 743 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2
∥ 𝐴 ∧ ¬ 2
∥ 𝐵)) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3,
5})) |
59 | | elun 4079 |
. . . . . . . . . . 11
⊢ ((𝐴 mod 8) ∈ ({1, 7} ∪ {3,
5}) ↔ ((𝐴 mod 8)
∈ {1, 7} ∨ (𝐴 mod
8) ∈ {3, 5})) |
60 | 58, 59 | sylib 217 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2
∥ 𝐴 ∧ ¬ 2
∥ 𝐵)) → ((𝐴 mod 8) ∈ {1, 7} ∨
(𝐴 mod 8) ∈ {3,
5})) |
61 | 60 | orcanai 999 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2
∥ 𝐴 ∧ ¬ 2
∥ 𝐵)) ∧ ¬
(𝐴 mod 8) ∈ {1, 7})
→ (𝐴 mod 8) ∈ {3,
5}) |
62 | | lgsdir2lem3 26380 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ ℤ ∧ ¬ 2
∥ 𝐵) → (𝐵 mod 8) ∈ ({1, 7} ∪ {3,
5})) |
63 | 62 | ad2ant2l 742 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2
∥ 𝐴 ∧ ¬ 2
∥ 𝐵)) → (𝐵 mod 8) ∈ ({1, 7} ∪ {3,
5})) |
64 | | elun 4079 |
. . . . . . . . . . 11
⊢ ((𝐵 mod 8) ∈ ({1, 7} ∪ {3,
5}) ↔ ((𝐵 mod 8)
∈ {1, 7} ∨ (𝐵 mod
8) ∈ {3, 5})) |
65 | 63, 64 | sylib 217 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2
∥ 𝐴 ∧ ¬ 2
∥ 𝐵)) → ((𝐵 mod 8) ∈ {1, 7} ∨
(𝐵 mod 8) ∈ {3,
5})) |
66 | 65 | orcanai 999 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2
∥ 𝐴 ∧ ¬ 2
∥ 𝐵)) ∧ ¬
(𝐵 mod 8) ∈ {1, 7})
→ (𝐵 mod 8) ∈ {3,
5}) |
67 | 61, 66 | anim12dan 618 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2
∥ 𝐴 ∧ ¬ 2
∥ 𝐵)) ∧ (¬
(𝐴 mod 8) ∈ {1, 7}
∧ ¬ (𝐵 mod 8)
∈ {1, 7})) → ((𝐴
mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) |
68 | | lgsdir2lem5 26382 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧
(𝐵 mod 8) ∈ {3, 5}))
→ ((𝐴 · 𝐵) mod 8) ∈ {1,
7}) |
69 | 68 | adantlr 711 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2
∥ 𝐴 ∧ ¬ 2
∥ 𝐵)) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧
(𝐵 mod 8) ∈ {3, 5}))
→ ((𝐴 · 𝐵) mod 8) ∈ {1,
7}) |
70 | 67, 69 | syldan 590 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2
∥ 𝐴 ∧ ¬ 2
∥ 𝐵)) ∧ (¬
(𝐴 mod 8) ∈ {1, 7}
∧ ¬ (𝐵 mod 8)
∈ {1, 7})) → ((𝐴
· 𝐵) mod 8) ∈
{1, 7}) |
71 | 70 | iftrued 4464 |
. . . . . 6
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2
∥ 𝐴 ∧ ¬ 2
∥ 𝐵)) ∧ (¬
(𝐴 mod 8) ∈ {1, 7}
∧ ¬ (𝐵 mod 8)
∈ {1, 7})) → if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1) =
1) |
72 | 52, 56, 71 | 3eqtr4a 2805 |
. . . . 5
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2
∥ 𝐴 ∧ ¬ 2
∥ 𝐵)) ∧ (¬
(𝐴 mod 8) ∈ {1, 7}
∧ ¬ (𝐵 mod 8)
∈ {1, 7})) → (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) ·
if((𝐵 mod 8) ∈ {1, 7},
1, -1)) = if(((𝐴 ·
𝐵) mod 8) ∈ {1, 7}, 1,
-1)) |
73 | 34, 51, 72 | pm2.61ddan 810 |
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2
∥ 𝐴 ∧ ¬ 2
∥ 𝐵)) →
(if((𝐴 mod 8) ∈ {1,
7}, 1, -1) · if((𝐵
mod 8) ∈ {1, 7}, 1, -1)) = if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1,
-1)) |
74 | | iffalse 4465 |
. . . . . 6
⊢ (¬ 2
∥ 𝐴 → if(2
∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) =
if((𝐴 mod 8) ∈ {1, 7},
1, -1)) |
75 | | iffalse 4465 |
. . . . . 6
⊢ (¬ 2
∥ 𝐵 → if(2
∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) =
if((𝐵 mod 8) ∈ {1, 7},
1, -1)) |
76 | 74, 75 | oveqan12d 7274 |
. . . . 5
⊢ ((¬ 2
∥ 𝐴 ∧ ¬ 2
∥ 𝐵) → (if(2
∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1))
· if(2 ∥ 𝐵, 0,
if((𝐵 mod 8) ∈ {1, 7},
1, -1))) = (if((𝐴 mod 8)
∈ {1, 7}, 1, -1) · if((𝐵 mod 8) ∈ {1, 7}, 1,
-1))) |
77 | 76 | adantl 481 |
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2
∥ 𝐴 ∧ ¬ 2
∥ 𝐵)) → (if(2
∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1))
· if(2 ∥ 𝐵, 0,
if((𝐵 mod 8) ∈ {1, 7},
1, -1))) = (if((𝐴 mod 8)
∈ {1, 7}, 1, -1) · if((𝐵 mod 8) ∈ {1, 7}, 1,
-1))) |
78 | | ioran 980 |
. . . . . 6
⊢ (¬ (2
∥ 𝐴 ∨ 2 ∥
𝐵) ↔ (¬ 2 ∥
𝐴 ∧ ¬ 2 ∥
𝐵)) |
79 | | 2prm 16325 |
. . . . . . . . 9
⊢ 2 ∈
ℙ |
80 | | euclemma 16346 |
. . . . . . . . 9
⊢ ((2
∈ ℙ ∧ 𝐴
∈ ℤ ∧ 𝐵
∈ ℤ) → (2 ∥ (𝐴 · 𝐵) ↔ (2 ∥ 𝐴 ∨ 2 ∥ 𝐵))) |
81 | 79, 80 | mp3an1 1446 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2
∥ (𝐴 · 𝐵) ↔ (2 ∥ 𝐴 ∨ 2 ∥ 𝐵))) |
82 | 81 | notbid 317 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (¬ 2
∥ (𝐴 · 𝐵) ↔ ¬ (2 ∥ 𝐴 ∨ 2 ∥ 𝐵))) |
83 | 82 | biimpar 477 |
. . . . . 6
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (2
∥ 𝐴 ∨ 2 ∥
𝐵)) → ¬ 2 ∥
(𝐴 · 𝐵)) |
84 | 78, 83 | sylan2br 594 |
. . . . 5
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2
∥ 𝐴 ∧ ¬ 2
∥ 𝐵)) → ¬ 2
∥ (𝐴 · 𝐵)) |
85 | | iffalse 4465 |
. . . . 5
⊢ (¬ 2
∥ (𝐴 · 𝐵) → if(2 ∥ (𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1)) = if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1,
-1)) |
86 | 84, 85 | syl 17 |
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2
∥ 𝐴 ∧ ¬ 2
∥ 𝐵)) → if(2
∥ (𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1)) = if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1,
-1)) |
87 | 73, 77, 86 | 3eqtr4d 2788 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2
∥ 𝐴 ∧ ¬ 2
∥ 𝐵)) → (if(2
∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1))
· if(2 ∥ 𝐵, 0,
if((𝐵 mod 8) ∈ {1, 7},
1, -1))) = if(2 ∥ (𝐴
· 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1,
-1))) |
88 | 15, 26, 87 | pm2.61ddan 810 |
. 2
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (if(2
∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1))
· if(2 ∥ 𝐵, 0,
if((𝐵 mod 8) ∈ {1, 7},
1, -1))) = if(2 ∥ (𝐴
· 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1,
-1))) |
89 | | lgs2 26367 |
. . 3
⊢ (𝐴 ∈ ℤ → (𝐴 /L 2) = if(2
∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1,
-1))) |
90 | | lgs2 26367 |
. . 3
⊢ (𝐵 ∈ ℤ → (𝐵 /L 2) = if(2
∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1,
-1))) |
91 | 89, 90 | oveqan12d 7274 |
. 2
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 /L 2)
· (𝐵
/L 2)) = (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · if(2
∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1,
-1)))) |
92 | | zmulcl 12299 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 · 𝐵) ∈ ℤ) |
93 | | lgs2 26367 |
. . 3
⊢ ((𝐴 · 𝐵) ∈ ℤ → ((𝐴 · 𝐵) /L 2) = if(2 ∥
(𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1,
-1))) |
94 | 92, 93 | syl 17 |
. 2
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 · 𝐵) /L 2) = if(2 ∥
(𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1,
-1))) |
95 | 88, 91, 94 | 3eqtr4rd 2789 |
1
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 · 𝐵) /L 2) = ((𝐴 /L 2)
· (𝐵
/L 2))) |