MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsdir2 Structured version   Visualization version   GIF version

Theorem lgsdir2 27389
Description: The Legendre symbol is completely multiplicative at 2. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsdir2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 · 𝐵) /L 2) = ((𝐴 /L 2) · (𝐵 /L 2)))

Proof of Theorem lgsdir2
StepHypRef Expression
1 0cn 11251 . . . . . 6 0 ∈ ℂ
2 ax-1cn 11211 . . . . . . 7 1 ∈ ℂ
3 neg1cn 12378 . . . . . . 7 -1 ∈ ℂ
42, 3ifcli 4578 . . . . . 6 if((𝐵 mod 8) ∈ {1, 7}, 1, -1) ∈ ℂ
51, 4ifcli 4578 . . . . 5 if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) ∈ ℂ
65mul02i 11448 . . . 4 (0 · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))) = 0
7 iftrue 4537 . . . . . 6 (2 ∥ 𝐴 → if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) = 0)
87adantl 481 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥ 𝐴) → if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) = 0)
98oveq1d 7446 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥ 𝐴) → (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))) = (0 · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))))
10 2z 12647 . . . . . . 7 2 ∈ ℤ
11 dvdsmultr1 16330 . . . . . . 7 ((2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 ∥ 𝐴 → 2 ∥ (𝐴 · 𝐵)))
1210, 11mp3an1 1447 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 ∥ 𝐴 → 2 ∥ (𝐴 · 𝐵)))
1312imp 406 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥ 𝐴) → 2 ∥ (𝐴 · 𝐵))
1413iftrued 4539 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥ 𝐴) → if(2 ∥ (𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1)) = 0)
156, 9, 143eqtr4a 2801 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥ 𝐴) → (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))) = if(2 ∥ (𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1)))
162, 3ifcli 4578 . . . . . 6 if((𝐴 mod 8) ∈ {1, 7}, 1, -1) ∈ ℂ
171, 16ifcli 4578 . . . . 5 if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) ∈ ℂ
1817mul01i 11449 . . . 4 (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · 0) = 0
19 iftrue 4537 . . . . . 6 (2 ∥ 𝐵 → if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = 0)
2019adantl 481 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥ 𝐵) → if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = 0)
2120oveq2d 7447 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥ 𝐵) → (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))) = (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · 0))
22 dvdsmultr2 16332 . . . . . . 7 ((2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 ∥ 𝐵 → 2 ∥ (𝐴 · 𝐵)))
2310, 22mp3an1 1447 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 ∥ 𝐵 → 2 ∥ (𝐴 · 𝐵)))
2423imp 406 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥ 𝐵) → 2 ∥ (𝐴 · 𝐵))
2524iftrued 4539 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥ 𝐵) → if(2 ∥ (𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1)) = 0)
2618, 21, 253eqtr4a 2801 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 2 ∥ 𝐵) → (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))) = if(2 ∥ (𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1)))
274mullidi 11264 . . . . . 6 (1 · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = if((𝐵 mod 8) ∈ {1, 7}, 1, -1)
28 iftrue 4537 . . . . . . . 8 ((𝐴 mod 8) ∈ {1, 7} → if((𝐴 mod 8) ∈ {1, 7}, 1, -1) = 1)
2928adantl 481 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐴 mod 8) ∈ {1, 7}) → if((𝐴 mod 8) ∈ {1, 7}, 1, -1) = 1)
3029oveq1d 7446 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐴 mod 8) ∈ {1, 7}) → (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = (1 · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)))
31 lgsdir2lem4 27387 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 mod 8) ∈ {1, 7}) → (((𝐴 · 𝐵) mod 8) ∈ {1, 7} ↔ (𝐵 mod 8) ∈ {1, 7}))
3231adantlr 715 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐴 mod 8) ∈ {1, 7}) → (((𝐴 · 𝐵) mod 8) ∈ {1, 7} ↔ (𝐵 mod 8) ∈ {1, 7}))
3332ifbid 4554 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐴 mod 8) ∈ {1, 7}) → if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1) = if((𝐵 mod 8) ∈ {1, 7}, 1, -1))
3427, 30, 333eqtr4a 2801 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐴 mod 8) ∈ {1, 7}) → (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1))
3516mulridi 11263 . . . . . 6 (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · 1) = if((𝐴 mod 8) ∈ {1, 7}, 1, -1)
36 iftrue 4537 . . . . . . . 8 ((𝐵 mod 8) ∈ {1, 7} → if((𝐵 mod 8) ∈ {1, 7}, 1, -1) = 1)
3736adantl 481 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐵 mod 8) ∈ {1, 7}) → if((𝐵 mod 8) ∈ {1, 7}, 1, -1) = 1)
3837oveq2d 7447 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐵 mod 8) ∈ {1, 7}) → (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · 1))
39 zcn 12616 . . . . . . . . . . . 12 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
40 zcn 12616 . . . . . . . . . . . 12 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
41 mulcom 11239 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
4239, 40, 41syl2an 596 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
4342ad2antrr 726 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐵 mod 8) ∈ {1, 7}) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
4443oveq1d 7446 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐵 mod 8) ∈ {1, 7}) → ((𝐴 · 𝐵) mod 8) = ((𝐵 · 𝐴) mod 8))
4544eleq1d 2824 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐵 mod 8) ∈ {1, 7}) → (((𝐴 · 𝐵) mod 8) ∈ {1, 7} ↔ ((𝐵 · 𝐴) mod 8) ∈ {1, 7}))
46 lgsdir2lem4 27387 . . . . . . . . . 10 (((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ (𝐵 mod 8) ∈ {1, 7}) → (((𝐵 · 𝐴) mod 8) ∈ {1, 7} ↔ (𝐴 mod 8) ∈ {1, 7}))
4746ancom1s 653 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐵 mod 8) ∈ {1, 7}) → (((𝐵 · 𝐴) mod 8) ∈ {1, 7} ↔ (𝐴 mod 8) ∈ {1, 7}))
4847adantlr 715 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐵 mod 8) ∈ {1, 7}) → (((𝐵 · 𝐴) mod 8) ∈ {1, 7} ↔ (𝐴 mod 8) ∈ {1, 7}))
4945, 48bitrd 279 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐵 mod 8) ∈ {1, 7}) → (((𝐴 · 𝐵) mod 8) ∈ {1, 7} ↔ (𝐴 mod 8) ∈ {1, 7}))
5049ifbid 4554 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐵 mod 8) ∈ {1, 7}) → if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1) = if((𝐴 mod 8) ∈ {1, 7}, 1, -1))
5135, 38, 503eqtr4a 2801 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (𝐵 mod 8) ∈ {1, 7}) → (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1))
52 neg1mulneg1e1 12477 . . . . . 6 (-1 · -1) = 1
53 iffalse 4540 . . . . . . . 8 (¬ (𝐴 mod 8) ∈ {1, 7} → if((𝐴 mod 8) ∈ {1, 7}, 1, -1) = -1)
54 iffalse 4540 . . . . . . . 8 (¬ (𝐵 mod 8) ∈ {1, 7} → if((𝐵 mod 8) ∈ {1, 7}, 1, -1) = -1)
5553, 54oveqan12d 7450 . . . . . . 7 ((¬ (𝐴 mod 8) ∈ {1, 7} ∧ ¬ (𝐵 mod 8) ∈ {1, 7}) → (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = (-1 · -1))
5655adantl 481 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (¬ (𝐴 mod 8) ∈ {1, 7} ∧ ¬ (𝐵 mod 8) ∈ {1, 7})) → (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = (-1 · -1))
57 lgsdir2lem3 27386 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))
5857ad2ant2r 747 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) → (𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}))
59 elun 4163 . . . . . . . . . . 11 ((𝐴 mod 8) ∈ ({1, 7} ∪ {3, 5}) ↔ ((𝐴 mod 8) ∈ {1, 7} ∨ (𝐴 mod 8) ∈ {3, 5}))
6058, 59sylib 218 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) → ((𝐴 mod 8) ∈ {1, 7} ∨ (𝐴 mod 8) ∈ {3, 5}))
6160orcanai 1004 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ ¬ (𝐴 mod 8) ∈ {1, 7}) → (𝐴 mod 8) ∈ {3, 5})
62 lgsdir2lem3 27386 . . . . . . . . . . . 12 ((𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝐵) → (𝐵 mod 8) ∈ ({1, 7} ∪ {3, 5}))
6362ad2ant2l 746 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) → (𝐵 mod 8) ∈ ({1, 7} ∪ {3, 5}))
64 elun 4163 . . . . . . . . . . 11 ((𝐵 mod 8) ∈ ({1, 7} ∪ {3, 5}) ↔ ((𝐵 mod 8) ∈ {1, 7} ∨ (𝐵 mod 8) ∈ {3, 5}))
6563, 64sylib 218 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) → ((𝐵 mod 8) ∈ {1, 7} ∨ (𝐵 mod 8) ∈ {3, 5}))
6665orcanai 1004 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ ¬ (𝐵 mod 8) ∈ {1, 7}) → (𝐵 mod 8) ∈ {3, 5})
6761, 66anim12dan 619 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (¬ (𝐴 mod 8) ∈ {1, 7} ∧ ¬ (𝐵 mod 8) ∈ {1, 7})) → ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5}))
68 lgsdir2lem5 27388 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) → ((𝐴 · 𝐵) mod 8) ∈ {1, 7})
6968adantlr 715 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ ((𝐴 mod 8) ∈ {3, 5} ∧ (𝐵 mod 8) ∈ {3, 5})) → ((𝐴 · 𝐵) mod 8) ∈ {1, 7})
7067, 69syldan 591 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (¬ (𝐴 mod 8) ∈ {1, 7} ∧ ¬ (𝐵 mod 8) ∈ {1, 7})) → ((𝐴 · 𝐵) mod 8) ∈ {1, 7})
7170iftrued 4539 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (¬ (𝐴 mod 8) ∈ {1, 7} ∧ ¬ (𝐵 mod 8) ∈ {1, 7})) → if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1) = 1)
7252, 56, 713eqtr4a 2801 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) ∧ (¬ (𝐴 mod 8) ∈ {1, 7} ∧ ¬ (𝐵 mod 8) ∈ {1, 7})) → (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1))
7334, 51, 72pm2.61ddan 814 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) → (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1))
74 iffalse 4540 . . . . . 6 (¬ 2 ∥ 𝐴 → if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) = if((𝐴 mod 8) ∈ {1, 7}, 1, -1))
75 iffalse 4540 . . . . . 6 (¬ 2 ∥ 𝐵 → if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1)) = if((𝐵 mod 8) ∈ {1, 7}, 1, -1))
7674, 75oveqan12d 7450 . . . . 5 ((¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵) → (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))) = (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)))
7776adantl 481 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) → (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))) = (if((𝐴 mod 8) ∈ {1, 7}, 1, -1) · if((𝐵 mod 8) ∈ {1, 7}, 1, -1)))
78 ioran 985 . . . . . 6 (¬ (2 ∥ 𝐴 ∨ 2 ∥ 𝐵) ↔ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵))
79 2prm 16726 . . . . . . . . 9 2 ∈ ℙ
80 euclemma 16747 . . . . . . . . 9 ((2 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 ∥ (𝐴 · 𝐵) ↔ (2 ∥ 𝐴 ∨ 2 ∥ 𝐵)))
8179, 80mp3an1 1447 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 ∥ (𝐴 · 𝐵) ↔ (2 ∥ 𝐴 ∨ 2 ∥ 𝐵)))
8281notbid 318 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (¬ 2 ∥ (𝐴 · 𝐵) ↔ ¬ (2 ∥ 𝐴 ∨ 2 ∥ 𝐵)))
8382biimpar 477 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (2 ∥ 𝐴 ∨ 2 ∥ 𝐵)) → ¬ 2 ∥ (𝐴 · 𝐵))
8478, 83sylan2br 595 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) → ¬ 2 ∥ (𝐴 · 𝐵))
85 iffalse 4540 . . . . 5 (¬ 2 ∥ (𝐴 · 𝐵) → if(2 ∥ (𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1)) = if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1))
8684, 85syl 17 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) → if(2 ∥ (𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1)) = if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1))
8773, 77, 863eqtr4d 2785 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵)) → (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))) = if(2 ∥ (𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1)))
8815, 26, 87pm2.61ddan 814 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))) = if(2 ∥ (𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1)))
89 lgs2 27373 . . 3 (𝐴 ∈ ℤ → (𝐴 /L 2) = if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)))
90 lgs2 27373 . . 3 (𝐵 ∈ ℤ → (𝐵 /L 2) = if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1)))
9189, 90oveqan12d 7450 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 /L 2) · (𝐵 /L 2)) = (if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) · if(2 ∥ 𝐵, 0, if((𝐵 mod 8) ∈ {1, 7}, 1, -1))))
92 zmulcl 12664 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 · 𝐵) ∈ ℤ)
93 lgs2 27373 . . 3 ((𝐴 · 𝐵) ∈ ℤ → ((𝐴 · 𝐵) /L 2) = if(2 ∥ (𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1)))
9492, 93syl 17 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 · 𝐵) /L 2) = if(2 ∥ (𝐴 · 𝐵), 0, if(((𝐴 · 𝐵) mod 8) ∈ {1, 7}, 1, -1)))
9588, 91, 943eqtr4rd 2786 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 · 𝐵) /L 2) = ((𝐴 /L 2) · (𝐵 /L 2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1537  wcel 2106  cun 3961  ifcif 4531  {cpr 4633   class class class wbr 5148  (class class class)co 7431  cc 11151  0cc0 11153  1c1 11154   · cmul 11158  -cneg 11491  2c2 12319  3c3 12320  5c5 12322  7c7 12324  8c8 12325  cz 12611   mod cmo 13906  cdvds 16287  cprime 16705   /L clgs 27353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-dvds 16288  df-gcd 16529  df-prm 16706  df-phi 16800  df-pc 16871  df-lgs 27354
This theorem is referenced by:  lgsdirprm  27390
  Copyright terms: Public domain W3C validator