Step | Hyp | Ref
| Expression |
1 | | simpl1 1192 |
. . 3
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ π β π) β§ (((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β§ (π
βπΉ) β€ (π β¨ π)) β ((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π))) |
2 | | simpl2 1193 |
. . 3
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ π β π) β§ (((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β§ (π
βπΉ) β€ (π β¨ π)) β (πΉ β π β§ πΊ β π β§ π β π)) |
3 | | simpr 486 |
. . 3
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ π β π) β§ (((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β§ (π
βπΉ) β€ (π β¨ π)) β (π
βπΉ) β€ (π β¨ π)) |
4 | | simpl3l 1229 |
. . 3
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ π β π) β§ (((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β§ (π
βπΉ) β€ (π β¨ π)) β ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π)) |
5 | | simpl3r 1230 |
. . 3
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ π β π) β§ (((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β§ (π
βπΉ) β€ (π β¨ π)) β Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π))) |
6 | | cdlemg12.l |
. . . 4
β’ β€ =
(leβπΎ) |
7 | | cdlemg12.j |
. . . 4
β’ β¨ =
(joinβπΎ) |
8 | | cdlemg12.m |
. . . 4
β’ β§ =
(meetβπΎ) |
9 | | cdlemg12.a |
. . . 4
β’ π΄ = (AtomsβπΎ) |
10 | | cdlemg12.h |
. . . 4
β’ π» = (LHypβπΎ) |
11 | | cdlemg12.t |
. . . 4
β’ π = ((LTrnβπΎ)βπ) |
12 | | cdlemg12b.r |
. . . 4
β’ π
= ((trLβπΎ)βπ) |
13 | 6, 7, 8, 9, 10, 11, 12 | cdlemg22 39179 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ π β π) β§ ((π
βπΉ) β€ (π β¨ π) β§ ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β ((π β¨ (πΉβ(πΊβπ))) β§ π) = ((π β¨ (πΉβ(πΊβπ))) β§ π)) |
14 | 1, 2, 3, 4, 5, 13 | syl113anc 1383 |
. 2
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ π β π) β§ (((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β§ (π
βπΉ) β€ (π β¨ π)) β ((π β¨ (πΉβ(πΊβπ))) β§ π) = ((π β¨ (πΉβ(πΊβπ))) β§ π)) |
15 | | simpl1 1192 |
. . 3
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ π β π) β§ (((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β§ (π
βπΊ) β€ (π β¨ π)) β ((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π))) |
16 | | simpl2 1193 |
. . 3
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ π β π) β§ (((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β§ (π
βπΊ) β€ (π β¨ π)) β (πΉ β π β§ πΊ β π β§ π β π)) |
17 | | simpr 486 |
. . 3
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ π β π) β§ (((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β§ (π
βπΊ) β€ (π β¨ π)) β (π
βπΊ) β€ (π β¨ π)) |
18 | | simpl3l 1229 |
. . 3
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ π β π) β§ (((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β§ (π
βπΊ) β€ (π β¨ π)) β ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π)) |
19 | | simpl3r 1230 |
. . 3
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ π β π) β§ (((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β§ (π
βπΊ) β€ (π β¨ π)) β Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π))) |
20 | 6, 7, 8, 9, 10, 11, 12 | cdlemg20 39177 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ π β π) β§ ((π
βπΊ) β€ (π β¨ π) β§ ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β ((π β¨ (πΉβ(πΊβπ))) β§ π) = ((π β¨ (πΉβ(πΊβπ))) β§ π)) |
21 | 15, 16, 17, 18, 19, 20 | syl113anc 1383 |
. 2
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ π β π) β§ (((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β§ (π
βπΊ) β€ (π β¨ π)) β ((π β¨ (πΉβ(πΊβπ))) β§ π) = ((π β¨ (πΉβ(πΊβπ))) β§ π)) |
22 | | simpl1 1192 |
. . 3
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ π β π) β§ (((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β§ (Β¬ (π
βπΉ) β€ (π β¨ π) β§ Β¬ (π
βπΊ) β€ (π β¨ π))) β ((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π))) |
23 | | simpl2 1193 |
. . 3
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ π β π) β§ (((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β§ (Β¬ (π
βπΉ) β€ (π β¨ π) β§ Β¬ (π
βπΊ) β€ (π β¨ π))) β (πΉ β π β§ πΊ β π β§ π β π)) |
24 | | simprl 770 |
. . 3
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ π β π) β§ (((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β§ (Β¬ (π
βπΉ) β€ (π β¨ π) β§ Β¬ (π
βπΊ) β€ (π β¨ π))) β Β¬ (π
βπΉ) β€ (π β¨ π)) |
25 | | simprr 772 |
. . 3
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ π β π) β§ (((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β§ (Β¬ (π
βπΉ) β€ (π β¨ π) β§ Β¬ (π
βπΊ) β€ (π β¨ π))) β Β¬ (π
βπΊ) β€ (π β¨ π)) |
26 | 6, 7, 8, 9, 10, 11, 12 | cdlemg16z 39151 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ π β π) β§ (Β¬ (π
βπΉ) β€ (π β¨ π) β§ Β¬ (π
βπΊ) β€ (π β¨ π))) β ((π β¨ (πΉβ(πΊβπ))) β§ π) = ((π β¨ (πΉβ(πΊβπ))) β§ π)) |
27 | 22, 23, 24, 25, 26 | syl112anc 1375 |
. 2
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ π β π) β§ (((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β§ (Β¬ (π
βπΉ) β€ (π β¨ π) β§ Β¬ (π
βπΊ) β€ (π β¨ π))) β ((π β¨ (πΉβ(πΊβπ))) β§ π) = ((π β¨ (πΉβ(πΊβπ))) β§ π)) |
28 | 14, 21, 27 | pm2.61ddan 813 |
1
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ π β π) β§ (((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β ((π β¨ (πΉβ(πΊβπ))) β§ π) = ((π β¨ (πΉβ(πΊβπ))) β§ π)) |