MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.61ii Structured version   Visualization version   GIF version

Theorem pm2.61ii 183
Description: Inference eliminating two antecedents. (Contributed by NM, 4-Jan-1993.) (Proof shortened by Josh Purinton, 29-Dec-2000.)
Hypotheses
Ref Expression
pm2.61ii.1 𝜑 → (¬ 𝜓𝜒))
pm2.61ii.2 (𝜑𝜒)
pm2.61ii.3 (𝜓𝜒)
Assertion
Ref Expression
pm2.61ii 𝜒

Proof of Theorem pm2.61ii
StepHypRef Expression
1 pm2.61ii.2 . 2 (𝜑𝜒)
2 pm2.61ii.1 . . 3 𝜑 → (¬ 𝜓𝜒))
3 pm2.61ii.3 . . 3 (𝜓𝜒)
42, 3pm2.61d2 181 . 2 𝜑𝜒)
51, 4pm2.61i 182 1 𝜒
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  pm2.61iii  185  hbae  2431  pssnn  8951  pssnnOLD  9040  alephadd  10333  axextnd  10347  axunnd  10352  axpownd  10357  axregndlem2  10359  axregnd  10360  axinfndlem1  10361  axinfnd  10362  2cshwcshw  14538  ressress  16958  frgrreg  28758  bj-hbaeb2  35001  hbae-o  36917  hbequid  36923  ax5eq  36946  ax5el  36951  odd2prm2  45170
  Copyright terms: Public domain W3C validator