Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.61ii | Structured version Visualization version GIF version |
Description: Inference eliminating two antecedents. (Contributed by NM, 4-Jan-1993.) (Proof shortened by Josh Purinton, 29-Dec-2000.) |
Ref | Expression |
---|---|
pm2.61ii.1 | ⊢ (¬ 𝜑 → (¬ 𝜓 → 𝜒)) |
pm2.61ii.2 | ⊢ (𝜑 → 𝜒) |
pm2.61ii.3 | ⊢ (𝜓 → 𝜒) |
Ref | Expression |
---|---|
pm2.61ii | ⊢ 𝜒 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.61ii.2 | . 2 ⊢ (𝜑 → 𝜒) | |
2 | pm2.61ii.1 | . . 3 ⊢ (¬ 𝜑 → (¬ 𝜓 → 𝜒)) | |
3 | pm2.61ii.3 | . . 3 ⊢ (𝜓 → 𝜒) | |
4 | 2, 3 | pm2.61d2 181 | . 2 ⊢ (¬ 𝜑 → 𝜒) |
5 | 1, 4 | pm2.61i 182 | 1 ⊢ 𝜒 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.61iii 185 hbae 2429 pssnn 9033 pssnnOLD 9130 alephadd 10434 axextnd 10448 axunnd 10453 axpownd 10458 axregndlem2 10460 axregnd 10461 axinfndlem1 10462 axinfnd 10463 2cshwcshw 14637 ressress 17055 frgrreg 29046 bj-hbaeb2 35096 hbae-o 37178 hbequid 37184 ax5eq 37207 ax5el 37212 odd2prm2 45529 |
Copyright terms: Public domain | W3C validator |