MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.61ii Structured version   Visualization version   GIF version

Theorem pm2.61ii 178
Description: Inference eliminating two antecedents. (Contributed by NM, 4-Jan-1993.) (Proof shortened by Josh Purinton, 29-Dec-2000.)
Hypotheses
Ref Expression
pm2.61ii.1 𝜑 → (¬ 𝜓𝜒))
pm2.61ii.2 (𝜑𝜒)
pm2.61ii.3 (𝜓𝜒)
Assertion
Ref Expression
pm2.61ii 𝜒

Proof of Theorem pm2.61ii
StepHypRef Expression
1 pm2.61ii.2 . 2 (𝜑𝜒)
2 pm2.61ii.1 . . 3 𝜑 → (¬ 𝜓𝜒))
3 pm2.61ii.3 . . 3 (𝜓𝜒)
42, 3pm2.61d2 174 . 2 𝜑𝜒)
51, 4pm2.61i 177 1 𝜒
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  pm2.61iii  180  hbae  2438  pssnn  8420  alephadd  9687  axextnd  9701  axunnd  9706  axpownd  9711  axregndlem2  9713  axregnd  9714  axinfndlem1  9715  axinfnd  9716  2cshwcshw  13910  ressress  16264  frgrreg  27779  bj-hbaeb2  33300  hbae-o  34924  hbequid  34930  ax5eq  34953  ax5el  34958  odd2prm2  42409
  Copyright terms: Public domain W3C validator