| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.61ii | Structured version Visualization version GIF version | ||
| Description: Inference eliminating two antecedents. (Contributed by NM, 4-Jan-1993.) (Proof shortened by Josh Purinton, 29-Dec-2000.) |
| Ref | Expression |
|---|---|
| pm2.61ii.1 | ⊢ (¬ 𝜑 → (¬ 𝜓 → 𝜒)) |
| pm2.61ii.2 | ⊢ (𝜑 → 𝜒) |
| pm2.61ii.3 | ⊢ (𝜓 → 𝜒) |
| Ref | Expression |
|---|---|
| pm2.61ii | ⊢ 𝜒 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.61ii.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 2 | pm2.61ii.1 | . . 3 ⊢ (¬ 𝜑 → (¬ 𝜓 → 𝜒)) | |
| 3 | pm2.61ii.3 | . . 3 ⊢ (𝜓 → 𝜒) | |
| 4 | 2, 3 | pm2.61d2 181 | . 2 ⊢ (¬ 𝜑 → 𝜒) |
| 5 | 1, 4 | pm2.61i 182 | 1 ⊢ 𝜒 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm2.61iii 185 hbae 2436 pssnn 9187 alephadd 10596 axextnd 10610 axunnd 10615 axpownd 10620 axregndlem2 10622 axregnd 10623 axinfndlem1 10624 axinfnd 10625 2cshwcshw 14849 ressress 17273 frgrreg 30380 bj-hbaeb2 36841 hbae-o 38926 hbequid 38932 ax5eq 38955 ax5el 38960 odd2prm2 47699 |
| Copyright terms: Public domain | W3C validator |