Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.61ii | Structured version Visualization version GIF version |
Description: Inference eliminating two antecedents. (Contributed by NM, 4-Jan-1993.) (Proof shortened by Josh Purinton, 29-Dec-2000.) |
Ref | Expression |
---|---|
pm2.61ii.1 | ⊢ (¬ 𝜑 → (¬ 𝜓 → 𝜒)) |
pm2.61ii.2 | ⊢ (𝜑 → 𝜒) |
pm2.61ii.3 | ⊢ (𝜓 → 𝜒) |
Ref | Expression |
---|---|
pm2.61ii | ⊢ 𝜒 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.61ii.2 | . 2 ⊢ (𝜑 → 𝜒) | |
2 | pm2.61ii.1 | . . 3 ⊢ (¬ 𝜑 → (¬ 𝜓 → 𝜒)) | |
3 | pm2.61ii.3 | . . 3 ⊢ (𝜓 → 𝜒) | |
4 | 2, 3 | pm2.61d2 181 | . 2 ⊢ (¬ 𝜑 → 𝜒) |
5 | 1, 4 | pm2.61i 182 | 1 ⊢ 𝜒 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.61iii 185 hbae 2431 pssnn 8951 pssnnOLD 9040 alephadd 10333 axextnd 10347 axunnd 10352 axpownd 10357 axregndlem2 10359 axregnd 10360 axinfndlem1 10361 axinfnd 10362 2cshwcshw 14538 ressress 16958 frgrreg 28758 bj-hbaeb2 35001 hbae-o 36917 hbequid 36923 ax5eq 36946 ax5el 36951 odd2prm2 45170 |
Copyright terms: Public domain | W3C validator |