MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbgr0edglem Structured version   Visualization version   GIF version

Theorem nbgr0edglem 29320
Description: Lemma for nbgr0edg 29321 and nbgr1vtx 29322. (Contributed by AV, 15-Nov-2020.)
Hypothesis
Ref Expression
nbgr0edglem.v (𝜑 → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒)
Assertion
Ref Expression
nbgr0edglem (𝜑 → (𝐺 NeighbVtx 𝐾) = ∅)
Distinct variable groups:   𝑒,𝐺,𝑛   𝑒,𝐾,𝑛
Allowed substitution hints:   𝜑(𝑒,𝑛)

Proof of Theorem nbgr0edglem
StepHypRef Expression
1 eqid 2734 . . . . . . . 8 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2734 . . . . . . . 8 (Edg‘𝐺) = (Edg‘𝐺)
31, 2nbgrval 29300 . . . . . . 7 (𝐾 ∈ (Vtx‘𝐺) → (𝐺 NeighbVtx 𝐾) = {𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒})
43ad2antrl 728 . . . . . 6 (((𝐺 ∈ V ∧ 𝐾 ∈ V) ∧ (𝐾 ∈ (Vtx‘𝐺) ∧ 𝜑)) → (𝐺 NeighbVtx 𝐾) = {𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒})
5 nbgr0edglem.v . . . . . . . 8 (𝜑 → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒)
65ad2antll 729 . . . . . . 7 (((𝐺 ∈ V ∧ 𝐾 ∈ V) ∧ (𝐾 ∈ (Vtx‘𝐺) ∧ 𝜑)) → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒)
7 rabeq0 4370 . . . . . . 7 ({𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒} = ∅ ↔ ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒)
86, 7sylibr 234 . . . . . 6 (((𝐺 ∈ V ∧ 𝐾 ∈ V) ∧ (𝐾 ∈ (Vtx‘𝐺) ∧ 𝜑)) → {𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒} = ∅)
94, 8eqtrd 2769 . . . . 5 (((𝐺 ∈ V ∧ 𝐾 ∈ V) ∧ (𝐾 ∈ (Vtx‘𝐺) ∧ 𝜑)) → (𝐺 NeighbVtx 𝐾) = ∅)
109expcom 413 . . . 4 ((𝐾 ∈ (Vtx‘𝐺) ∧ 𝜑) → ((𝐺 ∈ V ∧ 𝐾 ∈ V) → (𝐺 NeighbVtx 𝐾) = ∅))
1110ex 412 . . 3 (𝐾 ∈ (Vtx‘𝐺) → (𝜑 → ((𝐺 ∈ V ∧ 𝐾 ∈ V) → (𝐺 NeighbVtx 𝐾) = ∅)))
1211com23 86 . 2 (𝐾 ∈ (Vtx‘𝐺) → ((𝐺 ∈ V ∧ 𝐾 ∈ V) → (𝜑 → (𝐺 NeighbVtx 𝐾) = ∅)))
13 df-nel 3036 . . . 4 (𝐾 ∉ (Vtx‘𝐺) ↔ ¬ 𝐾 ∈ (Vtx‘𝐺))
141nbgrnvtx0 29303 . . . 4 (𝐾 ∉ (Vtx‘𝐺) → (𝐺 NeighbVtx 𝐾) = ∅)
1513, 14sylbir 235 . . 3 𝐾 ∈ (Vtx‘𝐺) → (𝐺 NeighbVtx 𝐾) = ∅)
1615a1d 25 . 2 𝐾 ∈ (Vtx‘𝐺) → (𝜑 → (𝐺 NeighbVtx 𝐾) = ∅))
17 nbgrprc0 29298 . . 3 (¬ (𝐺 ∈ V ∧ 𝐾 ∈ V) → (𝐺 NeighbVtx 𝐾) = ∅)
1817a1d 25 . 2 (¬ (𝐺 ∈ V ∧ 𝐾 ∈ V) → (𝜑 → (𝐺 NeighbVtx 𝐾) = ∅))
1912, 16, 18pm2.61nii 184 1 (𝜑 → (𝐺 NeighbVtx 𝐾) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2107  wnel 3035  wral 3050  wrex 3059  {crab 3420  Vcvv 3464  cdif 3930  wss 3933  c0 4315  {csn 4608  {cpr 4610  cfv 6542  (class class class)co 7414  Vtxcvtx 28960  Edgcedg 29011   NeighbVtx cnbgr 29296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7997  df-2nd 7998  df-nbgr 29297
This theorem is referenced by:  nbgr0edg  29321  nbgr1vtx  29322
  Copyright terms: Public domain W3C validator