![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nbgr0edglem | Structured version Visualization version GIF version |
Description: Lemma for nbgr0edg 29392 and nbgr1vtx 29393. (Contributed by AV, 15-Nov-2020.) |
Ref | Expression |
---|---|
nbgr0edglem.v | ⊢ (𝜑 → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒) |
Ref | Expression |
---|---|
nbgr0edglem | ⊢ (𝜑 → (𝐺 NeighbVtx 𝐾) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . . . . . 8 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | eqid 2740 | . . . . . . . 8 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
3 | 1, 2 | nbgrval 29371 | . . . . . . 7 ⊢ (𝐾 ∈ (Vtx‘𝐺) → (𝐺 NeighbVtx 𝐾) = {𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒}) |
4 | 3 | ad2antrl 727 | . . . . . 6 ⊢ (((𝐺 ∈ V ∧ 𝐾 ∈ V) ∧ (𝐾 ∈ (Vtx‘𝐺) ∧ 𝜑)) → (𝐺 NeighbVtx 𝐾) = {𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒}) |
5 | nbgr0edglem.v | . . . . . . . 8 ⊢ (𝜑 → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒) | |
6 | 5 | ad2antll 728 | . . . . . . 7 ⊢ (((𝐺 ∈ V ∧ 𝐾 ∈ V) ∧ (𝐾 ∈ (Vtx‘𝐺) ∧ 𝜑)) → ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒) |
7 | rabeq0 4411 | . . . . . . 7 ⊢ ({𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒} = ∅ ↔ ∀𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ¬ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒) | |
8 | 6, 7 | sylibr 234 | . . . . . 6 ⊢ (((𝐺 ∈ V ∧ 𝐾 ∈ V) ∧ (𝐾 ∈ (Vtx‘𝐺) ∧ 𝜑)) → {𝑛 ∈ ((Vtx‘𝐺) ∖ {𝐾}) ∣ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑛} ⊆ 𝑒} = ∅) |
9 | 4, 8 | eqtrd 2780 | . . . . 5 ⊢ (((𝐺 ∈ V ∧ 𝐾 ∈ V) ∧ (𝐾 ∈ (Vtx‘𝐺) ∧ 𝜑)) → (𝐺 NeighbVtx 𝐾) = ∅) |
10 | 9 | expcom 413 | . . . 4 ⊢ ((𝐾 ∈ (Vtx‘𝐺) ∧ 𝜑) → ((𝐺 ∈ V ∧ 𝐾 ∈ V) → (𝐺 NeighbVtx 𝐾) = ∅)) |
11 | 10 | ex 412 | . . 3 ⊢ (𝐾 ∈ (Vtx‘𝐺) → (𝜑 → ((𝐺 ∈ V ∧ 𝐾 ∈ V) → (𝐺 NeighbVtx 𝐾) = ∅))) |
12 | 11 | com23 86 | . 2 ⊢ (𝐾 ∈ (Vtx‘𝐺) → ((𝐺 ∈ V ∧ 𝐾 ∈ V) → (𝜑 → (𝐺 NeighbVtx 𝐾) = ∅))) |
13 | df-nel 3053 | . . . 4 ⊢ (𝐾 ∉ (Vtx‘𝐺) ↔ ¬ 𝐾 ∈ (Vtx‘𝐺)) | |
14 | 1 | nbgrnvtx0 29374 | . . . 4 ⊢ (𝐾 ∉ (Vtx‘𝐺) → (𝐺 NeighbVtx 𝐾) = ∅) |
15 | 13, 14 | sylbir 235 | . . 3 ⊢ (¬ 𝐾 ∈ (Vtx‘𝐺) → (𝐺 NeighbVtx 𝐾) = ∅) |
16 | 15 | a1d 25 | . 2 ⊢ (¬ 𝐾 ∈ (Vtx‘𝐺) → (𝜑 → (𝐺 NeighbVtx 𝐾) = ∅)) |
17 | nbgrprc0 29369 | . . 3 ⊢ (¬ (𝐺 ∈ V ∧ 𝐾 ∈ V) → (𝐺 NeighbVtx 𝐾) = ∅) | |
18 | 17 | a1d 25 | . 2 ⊢ (¬ (𝐺 ∈ V ∧ 𝐾 ∈ V) → (𝜑 → (𝐺 NeighbVtx 𝐾) = ∅)) |
19 | 12, 16, 18 | pm2.61nii 184 | 1 ⊢ (𝜑 → (𝐺 NeighbVtx 𝐾) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∉ wnel 3052 ∀wral 3067 ∃wrex 3076 {crab 3443 Vcvv 3488 ∖ cdif 3973 ⊆ wss 3976 ∅c0 4352 {csn 4648 {cpr 4650 ‘cfv 6573 (class class class)co 7448 Vtxcvtx 29031 Edgcedg 29082 NeighbVtx cnbgr 29367 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-nbgr 29368 |
This theorem is referenced by: nbgr0edg 29392 nbgr1vtx 29393 |
Copyright terms: Public domain | W3C validator |