Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.61d1 | Structured version Visualization version GIF version |
Description: Inference eliminating an antecedent. (Contributed by NM, 15-Jul-2005.) |
Ref | Expression |
---|---|
pm2.61d1.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
pm2.61d1.2 | ⊢ (¬ 𝜓 → 𝜒) |
Ref | Expression |
---|---|
pm2.61d1 | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.61d1.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | pm2.61d1.2 | . . 3 ⊢ (¬ 𝜓 → 𝜒) | |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
4 | 1, 3 | pm2.61d 179 | 1 ⊢ (𝜑 → 𝜒) |
Copyright terms: Public domain | W3C validator |