MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm3.43i Structured version   Visualization version   GIF version

Theorem pm3.43i 472
Description: Nested conjunction of antecedents. (Contributed by NM, 4-Jan-1993.)
Assertion
Ref Expression
pm3.43i ((𝜑𝜓) → ((𝜑𝜒) → (𝜑 → (𝜓𝜒))))

Proof of Theorem pm3.43i
StepHypRef Expression
1 pm3.2 469 . 2 (𝜓 → (𝜒 → (𝜓𝜒)))
21imim3i 64 1 ((𝜑𝜓) → ((𝜑𝜒) → (𝜑 → (𝜓𝜒))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  pm3.43  473  bnj1110  32862
  Copyright terms: Public domain W3C validator