| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm3.43 | Structured version Visualization version GIF version | ||
| Description: Theorem *3.43 (Comp) of [WhiteheadRussell] p. 113. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm3.43 | ⊢ (((𝜑 → 𝜓) ∧ (𝜑 → 𝜒)) → (𝜑 → (𝜓 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.43i 472 | . 2 ⊢ ((𝜑 → 𝜓) → ((𝜑 → 𝜒) → (𝜑 → (𝜓 ∧ 𝜒)))) | |
| 2 | 1 | imp 406 | 1 ⊢ (((𝜑 → 𝜓) ∧ (𝜑 → 𝜒)) → (𝜑 → (𝜓 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: jcab 517 anim12ii 618 darapti 2684 eqvincg 3648 bnj1110 34996 jm2.18 43000 jm2.15nn0 43015 jm2.16nn0 43016 cotrintab 43627 |
| Copyright terms: Public domain | W3C validator |