Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm3.21 | Structured version Visualization version GIF version |
Description: Join antecedents with conjunction. Theorem *3.21 of [WhiteheadRussell] p. 111. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
pm3.21 | ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜓 ∧ 𝜑) → (𝜓 ∧ 𝜑)) | |
2 | 1 | expcom 414 | 1 ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: iba 528 ancr 547 anc2r 555 19.29r 1877 19.40b 1891 19.41v 1953 19.41 2228 2ax6elem 2470 mo3 2564 2mo 2650 relopabi 5732 smoord 8196 fisupg 9062 winalim2 10452 relin01 11499 cshwlen 14512 aalioulem5 25496 musum 26340 chrelat2i 30727 bnj1173 32982 waj-ax 34603 sbn1ALT 35042 hlrelat2 37417 pm11.71 42015 onfrALTlem2 42166 19.41rg 42170 not12an2impnot1 42188 onfrALTlem2VD 42509 2pm13.193VD 42523 ax6e2eqVD 42527 ssfz12 44806 |
Copyright terms: Public domain | W3C validator |