Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm3.21 | Structured version Visualization version GIF version |
Description: Join antecedents with conjunction. Theorem *3.21 of [WhiteheadRussell] p. 111. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
pm3.21 | ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜓 ∧ 𝜑) → (𝜓 ∧ 𝜑)) | |
2 | 1 | expcom 413 | 1 ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: iba 527 ancr 546 anc2r 554 19.29r 1878 19.40b 1892 19.41v 1954 19.41 2231 2ax6elem 2470 mo3 2564 2mo 2650 relopabi 5721 smoord 8167 fisupg 8992 winalim2 10383 relin01 11429 cshwlen 14440 aalioulem5 25401 musum 26245 chrelat2i 30628 bnj1173 32882 waj-ax 34530 sbn1ALT 34969 hlrelat2 37344 pm11.71 41904 onfrALTlem2 42055 19.41rg 42059 not12an2impnot1 42077 onfrALTlem2VD 42398 2pm13.193VD 42412 ax6e2eqVD 42416 ssfz12 44694 |
Copyright terms: Public domain | W3C validator |