![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm3.21 | Structured version Visualization version GIF version |
Description: Join antecedents with conjunction. Theorem *3.21 of [WhiteheadRussell] p. 111. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
pm3.21 | ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜓 ∧ 𝜑) → (𝜓 ∧ 𝜑)) | |
2 | 1 | expcom 413 | 1 ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: iba 527 ancr 546 anc2r 554 19.29r 1873 19.40b 1887 19.41v 1949 19.41 2236 2ax6elem 2478 mo3 2567 2mo 2651 relopabi 5846 smoord 8421 fisupg 9352 winalim2 10765 relin01 11814 cshwlen 14847 aalioulem5 26396 musum 27252 chrelat2i 32397 bnj1173 34978 waj-ax 36380 sbn1ALT 36824 hlrelat2 39360 pm11.71 44366 onfrALTlem2 44517 19.41rg 44521 not12an2impnot1 44539 onfrALTlem2VD 44860 2pm13.193VD 44874 ax6e2eqVD 44878 ssfz12 47229 |
Copyright terms: Public domain | W3C validator |