MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm3.21 Structured version   Visualization version   GIF version

Theorem pm3.21 471
Description: Join antecedents with conjunction. Theorem *3.21 of [WhiteheadRussell] p. 111. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
pm3.21 (𝜑 → (𝜓 → (𝜓𝜑)))

Proof of Theorem pm3.21
StepHypRef Expression
1 id 22 . 2 ((𝜓𝜑) → (𝜓𝜑))
21expcom 413 1 (𝜑 → (𝜓 → (𝜓𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  iba  527  ancr  546  anc2r  554  19.29r  1874  19.40b  1888  19.41v  1949  19.41  2236  2ax6elem  2468  mo3  2557  2mo  2641  relopabi  5769  smoord  8295  fisupg  9193  winalim2  10609  relin01  11662  cshwlen  14723  aalioulem5  26260  musum  27117  chrelat2i  32327  bnj1173  34968  waj-ax  36387  sbn1ALT  36831  hlrelat2  39382  pm11.71  44370  onfrALTlem2  44520  19.41rg  44524  not12an2impnot1  44542  onfrALTlem2VD  44862  2pm13.193VD  44876  ax6e2eqVD  44880  ssfz12  47299
  Copyright terms: Public domain W3C validator