| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm3.21 | Structured version Visualization version GIF version | ||
| Description: Join antecedents with conjunction. Theorem *3.21 of [WhiteheadRussell] p. 111. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| pm3.21 | ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ ((𝜓 ∧ 𝜑) → (𝜓 ∧ 𝜑)) | |
| 2 | 1 | expcom 413 | 1 ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: iba 527 ancr 546 anc2r 554 19.29r 1874 19.40b 1888 19.41v 1949 19.41 2236 2ax6elem 2468 mo3 2557 2mo 2641 relopabi 5785 smoord 8334 fisupg 9235 winalim2 10649 relin01 11702 cshwlen 14764 aalioulem5 26244 musum 27101 chrelat2i 32294 bnj1173 34992 waj-ax 36402 sbn1ALT 36846 hlrelat2 39397 pm11.71 44386 onfrALTlem2 44536 19.41rg 44540 not12an2impnot1 44558 onfrALTlem2VD 44878 2pm13.193VD 44892 ax6e2eqVD 44896 ssfz12 47315 |
| Copyright terms: Public domain | W3C validator |