![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm3.21 | Structured version Visualization version GIF version |
Description: Join antecedents with conjunction. Theorem *3.21 of [WhiteheadRussell] p. 111. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
pm3.21 | ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜓 ∧ 𝜑) → (𝜓 ∧ 𝜑)) | |
2 | 1 | expcom 413 | 1 ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: iba 527 ancr 546 anc2r 554 19.29r 1876 19.40b 1890 19.41v 1952 19.41 2227 2ax6elem 2468 mo3 2557 2mo 2643 relopabi 5822 smoord 8371 fisupg 9297 winalim2 10697 relin01 11745 cshwlen 14756 aalioulem5 26099 musum 26946 chrelat2i 31900 bnj1173 34326 waj-ax 35615 sbn1ALT 36053 hlrelat2 38590 pm11.71 43471 onfrALTlem2 43622 19.41rg 43626 not12an2impnot1 43644 onfrALTlem2VD 43965 2pm13.193VD 43979 ax6e2eqVD 43983 ssfz12 46333 |
Copyright terms: Public domain | W3C validator |