| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm3.21 | Structured version Visualization version GIF version | ||
| Description: Join antecedents with conjunction. Theorem *3.21 of [WhiteheadRussell] p. 111. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| pm3.21 | ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ ((𝜓 ∧ 𝜑) → (𝜓 ∧ 𝜑)) | |
| 2 | 1 | expcom 413 | 1 ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: iba 527 ancr 546 anc2r 554 19.29r 1874 19.40b 1888 19.41v 1949 19.41 2235 2ax6elem 2474 mo3 2563 2mo 2647 relopabi 5801 smoord 8379 fisupg 9296 winalim2 10710 relin01 11761 cshwlen 14817 aalioulem5 26296 musum 27153 chrelat2i 32346 bnj1173 35033 waj-ax 36432 sbn1ALT 36876 hlrelat2 39422 pm11.71 44421 onfrALTlem2 44571 19.41rg 44575 not12an2impnot1 44593 onfrALTlem2VD 44913 2pm13.193VD 44927 ax6e2eqVD 44931 ssfz12 47343 |
| Copyright terms: Public domain | W3C validator |