| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm3.21 | Structured version Visualization version GIF version | ||
| Description: Join antecedents with conjunction. Theorem *3.21 of [WhiteheadRussell] p. 111. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| pm3.21 | ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ ((𝜓 ∧ 𝜑) → (𝜓 ∧ 𝜑)) | |
| 2 | 1 | expcom 413 | 1 ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: iba 527 ancr 546 anc2r 554 19.29r 1875 19.40b 1889 19.41v 1950 19.41 2240 2ax6elem 2472 mo3 2561 2mo 2645 relopabi 5766 smoord 8291 fisupg 9179 winalim2 10594 relin01 11648 cshwlen 14708 aalioulem5 26272 musum 27129 chrelat2i 32347 bnj1173 35035 waj-ax 36479 sbn1ALT 36923 hlrelat2 39522 pm11.71 44514 onfrALTlem2 44663 19.41rg 44667 not12an2impnot1 44685 onfrALTlem2VD 45005 2pm13.193VD 45019 ax6e2eqVD 45023 ssfz12 47438 |
| Copyright terms: Public domain | W3C validator |