| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm3.21 | Structured version Visualization version GIF version | ||
| Description: Join antecedents with conjunction. Theorem *3.21 of [WhiteheadRussell] p. 111. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| pm3.21 | ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ ((𝜓 ∧ 𝜑) → (𝜓 ∧ 𝜑)) | |
| 2 | 1 | expcom 413 | 1 ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: iba 527 ancr 546 anc2r 554 19.29r 1874 19.40b 1888 19.41v 1949 19.41 2236 2ax6elem 2468 mo3 2557 2mo 2641 relopabi 5769 smoord 8295 fisupg 9193 winalim2 10609 relin01 11662 cshwlen 14723 aalioulem5 26260 musum 27117 chrelat2i 32327 bnj1173 34968 waj-ax 36387 sbn1ALT 36831 hlrelat2 39382 pm11.71 44370 onfrALTlem2 44520 19.41rg 44524 not12an2impnot1 44542 onfrALTlem2VD 44862 2pm13.193VD 44876 ax6e2eqVD 44880 ssfz12 47299 |
| Copyright terms: Public domain | W3C validator |