| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm3.21 | Structured version Visualization version GIF version | ||
| Description: Join antecedents with conjunction. Theorem *3.21 of [WhiteheadRussell] p. 111. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| pm3.21 | ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ ((𝜓 ∧ 𝜑) → (𝜓 ∧ 𝜑)) | |
| 2 | 1 | expcom 413 | 1 ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: iba 527 ancr 546 anc2r 554 19.29r 1875 19.40b 1889 19.41v 1950 19.41 2238 2ax6elem 2470 mo3 2559 2mo 2643 relopabi 5762 smoord 8285 fisupg 9172 winalim2 10584 relin01 11638 cshwlen 14703 aalioulem5 26269 musum 27126 chrelat2i 32340 bnj1173 35009 waj-ax 36447 sbn1ALT 36891 hlrelat2 39441 pm11.71 44429 onfrALTlem2 44578 19.41rg 44582 not12an2impnot1 44600 onfrALTlem2VD 44920 2pm13.193VD 44934 ax6e2eqVD 44938 ssfz12 47344 |
| Copyright terms: Public domain | W3C validator |