| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm3.21 | Structured version Visualization version GIF version | ||
| Description: Join antecedents with conjunction. Theorem *3.21 of [WhiteheadRussell] p. 111. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| pm3.21 | ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ ((𝜓 ∧ 𝜑) → (𝜓 ∧ 𝜑)) | |
| 2 | 1 | expcom 413 | 1 ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: iba 527 ancr 546 anc2r 554 19.29r 1874 19.40b 1888 19.41v 1949 19.41 2236 2ax6elem 2469 mo3 2558 2mo 2642 relopabi 5788 smoord 8337 fisupg 9242 winalim2 10656 relin01 11709 cshwlen 14771 aalioulem5 26251 musum 27108 chrelat2i 32301 bnj1173 34999 waj-ax 36409 sbn1ALT 36853 hlrelat2 39404 pm11.71 44393 onfrALTlem2 44543 19.41rg 44547 not12an2impnot1 44565 onfrALTlem2VD 44885 2pm13.193VD 44899 ax6e2eqVD 44903 ssfz12 47319 |
| Copyright terms: Public domain | W3C validator |