Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm3.2 | Structured version Visualization version GIF version |
Description: Join antecedents with conjunction ("conjunction introduction"). Theorem *3.2 of [WhiteheadRussell] p. 111. Its associated inference is pm3.2i 471 and its associated deduction is jca 512 (and the double deduction is jcad 513). See pm3.2im 160 for a version using only implication and negation. (Contributed by NM, 5-Jan-1993.) (Proof shortened by Wolf Lammen, 12-Nov-2012.) |
Ref | Expression |
---|---|
pm3.2 | ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓)) | |
2 | 1 | ex 413 | 1 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: pm3.2i 471 pm3.43i 473 jca 512 jcad 513 ancl 545 19.29 1876 19.40b 1891 sban 2083 sb1 2479 mo4 2566 axia3 2696 r19.26 3095 r19.29 3184 difrab 4242 reuss2 4249 dmcosseq 5882 fvn0fvelrn 7035 soxp 7970 suppofssd 8019 smoord 8196 xpwdomg 9344 alephexp2 10337 lediv2a 11869 ssfzo12 13480 r19.29uz 15062 gsummoncoe1 21475 fbun 22991 fisshasheq 33073 isdrngo3 36117 or3or 41631 pm11.71 42015 tratrb 42156 onfrALTlem3 42164 elex22VD 42459 en3lplem1VD 42463 tratrbVD 42481 undif3VD 42502 onfrALTlem3VD 42507 19.41rgVD 42522 2pm13.193VD 42523 ax6e2eqVD 42527 2uasbanhVD 42531 vk15.4jVD 42534 fzoopth 44819 |
Copyright terms: Public domain | W3C validator |