| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm3.2 | Structured version Visualization version GIF version | ||
| Description: Join antecedents with conjunction ("conjunction introduction"). Theorem *3.2 of [WhiteheadRussell] p. 111. Its associated inference is pm3.2i 470 and its associated deduction is jca 511 (and the double deduction is jcad 512). See pm3.2im 160 for a version using only implication and negation. (Contributed by NM, 5-Jan-1993.) (Proof shortened by Wolf Lammen, 12-Nov-2012.) |
| Ref | Expression |
|---|---|
| pm3.2 | ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓)) | |
| 2 | 1 | ex 412 | 1 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm3.2i 470 pm3.43i 472 jca 511 jcad 512 ancl 544 19.29 1873 19.40b 1888 sban 2080 sb1 2482 mo4 2565 axia3 2694 r19.26 3098 r19.29OLD 3102 difrab 4293 reuss2 4301 dmcosseq 5956 dmcosseqOLD 5957 fvn0fvelrnOLD 7153 soxp 8128 suppofssd 8202 smoord 8379 xpwdomg 9599 alephexp2 10595 lediv2a 12136 ssfzo12 13775 fzoopth 13778 r19.29uz 15369 gsummoncoe1 22246 fbun 23778 fisshasheq 35137 isdrngo3 37983 cantnf2 43349 or3or 44047 pm11.71 44421 tratrb 44561 onfrALTlem3 44569 elex22VD 44863 en3lplem1VD 44867 tratrbVD 44885 undif3VD 44906 onfrALTlem3VD 44911 19.41rgVD 44926 2pm13.193VD 44927 ax6e2eqVD 44931 2uasbanhVD 44935 vk15.4jVD 44938 |
| Copyright terms: Public domain | W3C validator |