| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm3.2 | Structured version Visualization version GIF version | ||
| Description: Join antecedents with conjunction ("conjunction introduction"). Theorem *3.2 of [WhiteheadRussell] p. 111. Its associated inference is pm3.2i 470 and its associated deduction is jca 511 (and the double deduction is jcad 512). See pm3.2im 160 for a version using only implication and negation. (Contributed by NM, 5-Jan-1993.) (Proof shortened by Wolf Lammen, 12-Nov-2012.) |
| Ref | Expression |
|---|---|
| pm3.2 | ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓)) | |
| 2 | 1 | ex 412 | 1 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm3.2i 470 pm3.43i 472 jca 511 jcad 512 ancl 544 19.29 1873 19.40b 1888 sban 2080 sb1 2483 mo4 2566 axia3 2695 r19.26 3111 r19.29OLD 3115 difrab 4318 reuss2 4326 dmcosseq 5987 dmcosseqOLD 5988 fvn0fvelrnOLD 7183 soxp 8154 suppofssd 8228 smoord 8405 xpwdomg 9625 alephexp2 10621 lediv2a 12162 ssfzo12 13798 fzoopth 13801 r19.29uz 15389 gsummoncoe1 22312 fbun 23848 fisshasheq 35120 isdrngo3 37966 cantnf2 43338 or3or 44036 pm11.71 44416 tratrb 44556 onfrALTlem3 44564 elex22VD 44859 en3lplem1VD 44863 tratrbVD 44881 undif3VD 44902 onfrALTlem3VD 44907 19.41rgVD 44922 2pm13.193VD 44923 ax6e2eqVD 44927 2uasbanhVD 44931 vk15.4jVD 44934 |
| Copyright terms: Public domain | W3C validator |