![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm3.2 | Structured version Visualization version GIF version |
Description: Join antecedents with conjunction ("conjunction introduction"). Theorem *3.2 of [WhiteheadRussell] p. 111. Its associated inference is pm3.2i 472 and its associated deduction is jca 513 (and the double deduction is jcad 514). See pm3.2im 160 for a version using only implication and negation. (Contributed by NM, 5-Jan-1993.) (Proof shortened by Wolf Lammen, 12-Nov-2012.) |
Ref | Expression |
---|---|
pm3.2 | ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓)) | |
2 | 1 | ex 414 | 1 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: pm3.2i 472 pm3.43i 474 jca 513 jcad 514 ancl 546 19.29 1877 19.40b 1892 sban 2084 sb1 2478 mo4 2561 axia3 2691 r19.26 3112 r19.29OLD 3116 difrab 4309 reuss2 4316 dmcosseq 5973 fvn0fvelrnOLD 7161 soxp 8115 suppofssd 8188 smoord 8365 xpwdomg 9580 alephexp2 10576 lediv2a 12108 ssfzo12 13725 r19.29uz 15297 gsummoncoe1 21828 fbun 23344 fisshasheq 34104 isdrngo3 36827 cantnf2 42075 or3or 42774 pm11.71 43156 tratrb 43297 onfrALTlem3 43305 elex22VD 43600 en3lplem1VD 43604 tratrbVD 43622 undif3VD 43643 onfrALTlem3VD 43648 19.41rgVD 43663 2pm13.193VD 43664 ax6e2eqVD 43668 2uasbanhVD 43672 vk15.4jVD 43675 fzoopth 46035 |
Copyright terms: Public domain | W3C validator |