| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm3.2 | Structured version Visualization version GIF version | ||
| Description: Join antecedents with conjunction ("conjunction introduction"). Theorem *3.2 of [WhiteheadRussell] p. 111. Its associated inference is pm3.2i 470 and its associated deduction is jca 511 (and the double deduction is jcad 512). See pm3.2im 160 for a version using only implication and negation. (Contributed by NM, 5-Jan-1993.) (Proof shortened by Wolf Lammen, 12-Nov-2012.) |
| Ref | Expression |
|---|---|
| pm3.2 | ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓)) | |
| 2 | 1 | ex 412 | 1 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm3.2i 470 pm3.43i 472 jca 511 jcad 512 ancl 544 19.29 1873 19.40b 1888 sban 2081 sb1 2476 mo4 2559 axia3 2688 r19.26 3091 r19.29OLD 3095 difrab 4281 reuss2 4289 dmcosseq 5940 dmcosseqOLD 5941 fvn0fvelrnOLD 7135 soxp 8108 suppofssd 8182 smoord 8334 xpwdomg 9538 alephexp2 10534 lediv2a 12077 ssfzo12 13720 fzoopth 13723 r19.29uz 15317 gsummoncoe1 22195 fbun 23727 fisshasheq 35102 isdrngo3 37953 cantnf2 43314 or3or 44012 pm11.71 44386 tratrb 44526 onfrALTlem3 44534 elex22VD 44828 en3lplem1VD 44832 tratrbVD 44850 undif3VD 44871 onfrALTlem3VD 44876 19.41rgVD 44891 2pm13.193VD 44892 ax6e2eqVD 44896 2uasbanhVD 44900 vk15.4jVD 44903 |
| Copyright terms: Public domain | W3C validator |