| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm3.2 | Structured version Visualization version GIF version | ||
| Description: Join antecedents with conjunction ("conjunction introduction"). Theorem *3.2 of [WhiteheadRussell] p. 111. Its associated inference is pm3.2i 470 and its associated deduction is jca 511 (and the double deduction is jcad 512). See pm3.2im 160 for a version using only implication and negation. (Contributed by NM, 5-Jan-1993.) (Proof shortened by Wolf Lammen, 12-Nov-2012.) |
| Ref | Expression |
|---|---|
| pm3.2 | ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓)) | |
| 2 | 1 | ex 412 | 1 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm3.2i 470 pm3.43i 472 jca 511 jcad 512 ancl 544 19.29 1874 19.40b 1889 sban 2083 sb1 2478 mo4 2561 axia3 2690 r19.26 3092 difrab 4268 reuss2 4276 dmcosseq 5917 dmcosseqOLD 5918 dmcosseqOLDOLD 5919 soxp 8059 suppofssd 8133 smoord 8285 xpwdomg 9471 alephexp2 10469 lediv2a 12013 ssfzo12 13656 fzoopth 13659 r19.29uz 15255 gsummoncoe1 22221 fbun 23753 fisshasheq 35147 isdrngo3 37998 cantnf2 43357 or3or 44055 pm11.71 44429 tratrb 44568 onfrALTlem3 44576 elex22VD 44870 en3lplem1VD 44874 tratrbVD 44892 undif3VD 44913 onfrALTlem3VD 44918 19.41rgVD 44933 2pm13.193VD 44934 ax6e2eqVD 44938 2uasbanhVD 44942 vk15.4jVD 44945 |
| Copyright terms: Public domain | W3C validator |