Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm3.2 | Structured version Visualization version GIF version |
Description: Join antecedents with conjunction ("conjunction introduction"). Theorem *3.2 of [WhiteheadRussell] p. 111. Its associated inference is pm3.2i 470 and its associated deduction is jca 511 (and the double deduction is jcad 512). See pm3.2im 160 for a version using only implication and negation. (Contributed by NM, 5-Jan-1993.) (Proof shortened by Wolf Lammen, 12-Nov-2012.) |
Ref | Expression |
---|---|
pm3.2 | ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓)) | |
2 | 1 | ex 412 | 1 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: pm3.2i 470 pm3.43i 472 jca 511 jcad 512 ancl 544 19.29 1877 19.40b 1892 sban 2084 sb1 2479 mo4 2566 axia3 2696 r19.26 3094 r19.29 3183 difrab 4239 reuss2 4246 dmcosseq 5871 fvn0fvelrn 7017 soxp 7941 suppofssd 7990 smoord 8167 xpwdomg 9274 alephexp2 10268 lediv2a 11799 ssfzo12 13408 r19.29uz 14990 gsummoncoe1 21385 fbun 22899 fisshasheq 32973 isdrngo3 36044 or3or 41520 pm11.71 41904 tratrb 42045 onfrALTlem3 42053 elex22VD 42348 en3lplem1VD 42352 tratrbVD 42370 undif3VD 42391 onfrALTlem3VD 42396 19.41rgVD 42411 2pm13.193VD 42412 ax6e2eqVD 42416 2uasbanhVD 42420 vk15.4jVD 42423 fzoopth 44707 |
Copyright terms: Public domain | W3C validator |