![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm3.2 | Structured version Visualization version GIF version |
Description: Join antecedents with conjunction ("conjunction introduction"). Theorem *3.2 of [WhiteheadRussell] p. 111. Its associated inference is pm3.2i 472 and its associated deduction is jca 513 (and the double deduction is jcad 514). See pm3.2im 160 for a version using only implication and negation. (Contributed by NM, 5-Jan-1993.) (Proof shortened by Wolf Lammen, 12-Nov-2012.) |
Ref | Expression |
---|---|
pm3.2 | ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓)) | |
2 | 1 | ex 414 | 1 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: pm3.2i 472 pm3.43i 474 jca 513 jcad 514 ancl 546 19.29 1877 19.40b 1892 sban 2084 sb1 2478 mo4 2561 axia3 2691 r19.26 3112 r19.29OLD 3116 difrab 4308 reuss2 4315 dmcosseq 5971 fvn0fvelrnOLD 7158 soxp 8112 suppofssd 8185 smoord 8362 xpwdomg 9577 alephexp2 10573 lediv2a 12105 ssfzo12 13722 r19.29uz 15294 gsummoncoe1 21820 fbun 23336 fisshasheq 34093 isdrngo3 36816 cantnf2 42061 or3or 42760 pm11.71 43142 tratrb 43283 onfrALTlem3 43291 elex22VD 43586 en3lplem1VD 43590 tratrbVD 43608 undif3VD 43629 onfrALTlem3VD 43634 19.41rgVD 43649 2pm13.193VD 43650 ax6e2eqVD 43654 2uasbanhVD 43658 vk15.4jVD 43661 fzoopth 46022 |
Copyright terms: Public domain | W3C validator |