| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm3.2 | Structured version Visualization version GIF version | ||
| Description: Join antecedents with conjunction ("conjunction introduction"). Theorem *3.2 of [WhiteheadRussell] p. 111. Its associated inference is pm3.2i 470 and its associated deduction is jca 511 (and the double deduction is jcad 512). See pm3.2im 160 for a version using only implication and negation. (Contributed by NM, 5-Jan-1993.) (Proof shortened by Wolf Lammen, 12-Nov-2012.) |
| Ref | Expression |
|---|---|
| pm3.2 | ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓)) | |
| 2 | 1 | ex 412 | 1 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm3.2i 470 pm3.43i 472 jca 511 jcad 512 ancl 544 19.29 1873 19.40b 1888 sban 2081 sb1 2476 mo4 2559 axia3 2688 r19.26 3089 difrab 4271 reuss2 4279 dmcosseq 5923 dmcosseqOLD 5924 dmcosseqOLDOLD 5925 fvn0fvelrnOLD 7101 soxp 8069 suppofssd 8143 smoord 8295 xpwdomg 9496 alephexp2 10494 lediv2a 12037 ssfzo12 13680 fzoopth 13683 r19.29uz 15276 gsummoncoe1 22211 fbun 23743 fisshasheq 35087 isdrngo3 37938 cantnf2 43298 or3or 43996 pm11.71 44370 tratrb 44510 onfrALTlem3 44518 elex22VD 44812 en3lplem1VD 44816 tratrbVD 44834 undif3VD 44855 onfrALTlem3VD 44860 19.41rgVD 44875 2pm13.193VD 44876 ax6e2eqVD 44880 2uasbanhVD 44884 vk15.4jVD 44887 |
| Copyright terms: Public domain | W3C validator |