![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm3.2 | Structured version Visualization version GIF version |
Description: Join antecedents with conjunction ("conjunction introduction"). Theorem *3.2 of [WhiteheadRussell] p. 111. Its associated inference is pm3.2i 470 and its associated deduction is jca 511 (and the double deduction is jcad 512). See pm3.2im 160 for a version using only implication and negation. (Contributed by NM, 5-Jan-1993.) (Proof shortened by Wolf Lammen, 12-Nov-2012.) |
Ref | Expression |
---|---|
pm3.2 | ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓)) | |
2 | 1 | ex 412 | 1 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: pm3.2i 470 pm3.43i 472 jca 511 jcad 512 ancl 544 19.29 1870 19.40b 1885 sban 2077 sb1 2480 mo4 2563 axia3 2692 r19.26 3108 r19.29OLD 3112 difrab 4323 reuss2 4331 dmcosseq 5989 dmcosseqOLD 5990 fvn0fvelrnOLD 7182 soxp 8152 suppofssd 8226 smoord 8403 xpwdomg 9622 alephexp2 10618 lediv2a 12159 ssfzo12 13794 fzoopth 13797 r19.29uz 15385 gsummoncoe1 22327 fbun 23863 fisshasheq 35098 isdrngo3 37945 cantnf2 43314 or3or 44012 pm11.71 44392 tratrb 44533 onfrALTlem3 44541 elex22VD 44836 en3lplem1VD 44840 tratrbVD 44858 undif3VD 44879 onfrALTlem3VD 44884 19.41rgVD 44899 2pm13.193VD 44900 ax6e2eqVD 44904 2uasbanhVD 44908 vk15.4jVD 44911 |
Copyright terms: Public domain | W3C validator |