![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm3.2 | Structured version Visualization version GIF version |
Description: Join antecedents with conjunction ("conjunction introduction"). Theorem *3.2 of [WhiteheadRussell] p. 111. Its associated inference is pm3.2i 470 and its associated deduction is jca 511 (and the double deduction is jcad 512). See pm3.2im 160 for a version using only implication and negation. (Contributed by NM, 5-Jan-1993.) (Proof shortened by Wolf Lammen, 12-Nov-2012.) |
Ref | Expression |
---|---|
pm3.2 | ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓)) | |
2 | 1 | ex 412 | 1 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: pm3.2i 470 pm3.43i 472 jca 511 jcad 512 ancl 544 19.29 1872 19.40b 1887 sban 2080 sb1 2486 mo4 2569 axia3 2698 r19.26 3117 r19.29OLD 3121 difrab 4337 reuss2 4345 dmcosseq 5999 dmcosseqOLD 6000 fvn0fvelrnOLD 7197 soxp 8170 suppofssd 8244 smoord 8421 xpwdomg 9654 alephexp2 10650 lediv2a 12189 ssfzo12 13809 fzoopth 13812 r19.29uz 15399 gsummoncoe1 22333 fbun 23869 fisshasheq 35082 isdrngo3 37919 cantnf2 43287 or3or 43985 pm11.71 44366 tratrb 44507 onfrALTlem3 44515 elex22VD 44810 en3lplem1VD 44814 tratrbVD 44832 undif3VD 44853 onfrALTlem3VD 44858 19.41rgVD 44873 2pm13.193VD 44874 ax6e2eqVD 44878 2uasbanhVD 44882 vk15.4jVD 44885 |
Copyright terms: Public domain | W3C validator |