| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm3.2 | Structured version Visualization version GIF version | ||
| Description: Join antecedents with conjunction ("conjunction introduction"). Theorem *3.2 of [WhiteheadRussell] p. 111. Its associated inference is pm3.2i 470 and its associated deduction is jca 511 (and the double deduction is jcad 512). See pm3.2im 160 for a version using only implication and negation. (Contributed by NM, 5-Jan-1993.) (Proof shortened by Wolf Lammen, 12-Nov-2012.) |
| Ref | Expression |
|---|---|
| pm3.2 | ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓)) | |
| 2 | 1 | ex 412 | 1 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm3.2i 470 pm3.43i 472 jca 511 jcad 512 ancl 544 19.29 1873 19.40b 1888 sban 2081 sb1 2477 mo4 2560 axia3 2689 r19.26 3092 r19.29OLD 3096 difrab 4284 reuss2 4292 dmcosseq 5943 dmcosseqOLD 5944 fvn0fvelrnOLD 7138 soxp 8111 suppofssd 8185 smoord 8337 xpwdomg 9545 alephexp2 10541 lediv2a 12084 ssfzo12 13727 fzoopth 13730 r19.29uz 15324 gsummoncoe1 22202 fbun 23734 fisshasheq 35109 isdrngo3 37960 cantnf2 43321 or3or 44019 pm11.71 44393 tratrb 44533 onfrALTlem3 44541 elex22VD 44835 en3lplem1VD 44839 tratrbVD 44857 undif3VD 44878 onfrALTlem3VD 44883 19.41rgVD 44898 2pm13.193VD 44899 ax6e2eqVD 44903 2uasbanhVD 44907 vk15.4jVD 44910 |
| Copyright terms: Public domain | W3C validator |