| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm3.2 | Structured version Visualization version GIF version | ||
| Description: Join antecedents with conjunction ("conjunction introduction"). Theorem *3.2 of [WhiteheadRussell] p. 111. Its associated inference is pm3.2i 470 and its associated deduction is jca 511 (and the double deduction is jcad 512). See pm3.2im 160 for a version using only implication and negation. (Contributed by NM, 5-Jan-1993.) (Proof shortened by Wolf Lammen, 12-Nov-2012.) |
| Ref | Expression |
|---|---|
| pm3.2 | ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓)) | |
| 2 | 1 | ex 412 | 1 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm3.2i 470 pm3.43i 472 jca 511 jcad 512 ancl 544 19.29 1874 19.40b 1889 sban 2085 sb1 2480 mo4 2563 axia3 2692 r19.26 3093 difrab 4267 reuss2 4275 dmcosseq 5921 dmcosseqOLD 5922 dmcosseqOLDOLD 5923 soxp 8065 suppofssd 8139 smoord 8291 xpwdomg 9478 alephexp2 10479 lediv2a 12023 ssfzo12 13661 fzoopth 13664 r19.29uz 15260 gsummoncoe1 22224 fbun 23756 fisshasheq 35180 isdrngo3 38019 cantnf2 43442 or3or 44140 pm11.71 44514 tratrb 44653 onfrALTlem3 44661 elex22VD 44955 en3lplem1VD 44959 tratrbVD 44977 undif3VD 44998 onfrALTlem3VD 45003 19.41rgVD 45018 2pm13.193VD 45019 ax6e2eqVD 45023 2uasbanhVD 45027 vk15.4jVD 45030 |
| Copyright terms: Public domain | W3C validator |