Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm4.14 | Structured version Visualization version GIF version |
Description: Theorem *4.14 of [WhiteheadRussell] p. 117. Related to con34b 316. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 23-Oct-2012.) |
Ref | Expression |
---|---|
pm4.14 | ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ ((𝜑 ∧ ¬ 𝜒) → ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con34b 316 | . . 3 ⊢ ((𝜓 → 𝜒) ↔ (¬ 𝜒 → ¬ 𝜓)) | |
2 | 1 | imbi2i 336 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) ↔ (𝜑 → (¬ 𝜒 → ¬ 𝜓))) |
3 | impexp 451 | . 2 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) | |
4 | impexp 451 | . 2 ⊢ (((𝜑 ∧ ¬ 𝜒) → ¬ 𝜓) ↔ (𝜑 → (¬ 𝜒 → ¬ 𝜓))) | |
5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ ((𝜑 ∧ ¬ 𝜒) → ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: pm3.37 805 ndvdssub 16118 |
Copyright terms: Public domain | W3C validator |