Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > con34b | Structured version Visualization version GIF version |
Description: A biconditional form of contraposition. Theorem *4.1 of [WhiteheadRussell] p. 116. (Contributed by NM, 11-May-1993.) |
Ref | Expression |
---|---|
con34b | ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜓 → ¬ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con3 156 | . 2 ⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) | |
2 | con4 113 | . 2 ⊢ ((¬ 𝜓 → ¬ 𝜑) → (𝜑 → 𝜓)) | |
3 | 1, 2 | impbii 212 | 1 ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜓 → ¬ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 |
This theorem is referenced by: mtt 368 pm4.14 807 dfbi3 1050 ifpdfbi 1071 r19.23v 3198 raldifsni 4708 dff14a 7082 weniso 7163 dfom2 7646 dfsup2 9060 wemapsolem 9166 pwfseqlem3 10274 indstr 12512 rpnnen2lem12 15786 algcvgblem 16134 isirred2 19719 isdomn2 20337 ist0-3 22242 mdegleb 24962 dchrelbas4 26124 toslublem 30969 tosglblem 30971 poimirlem25 35539 poimirlem30 35544 tsbi3 36030 isdomn3 40732 ntrneikb 41381 aacllem 46176 |
Copyright terms: Public domain | W3C validator |