| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con34b | Structured version Visualization version GIF version | ||
| Description: A biconditional form of contraposition. Theorem *4.1 of [WhiteheadRussell] p. 116. (Contributed by NM, 11-May-1993.) |
| Ref | Expression |
|---|---|
| con34b | ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜓 → ¬ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con3 153 | . 2 ⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) | |
| 2 | con4 113 | . 2 ⊢ ((¬ 𝜓 → ¬ 𝜑) → (𝜑 → 𝜓)) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜓 → ¬ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: mtt 364 pm4.14 806 dfbi3 1049 ifpdfbi 1070 r19.23v 3161 raldifsni 4759 dff14a 7245 weniso 7329 dfom2 7844 dfsup2 9395 wemapsolem 9503 pwfseqlem3 10613 indstr 12875 rpnnen2lem12 16193 algcvgblem 16547 isirred2 20330 isdomn2OLD 20621 isdomn3 20624 ist0-3 23232 mdegleb 25969 dchrelbas4 27154 toslublem 32898 tosglblem 32900 bj-alcomexcom 36668 poimirlem25 37639 poimirlem30 37644 tsbi3 38129 ntrneikb 44083 fulltermc 49500 aacllem 49790 |
| Copyright terms: Public domain | W3C validator |