MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  con34b Structured version   Visualization version   GIF version

Theorem con34b 316
Description: A biconditional form of contraposition. Theorem *4.1 of [WhiteheadRussell] p. 116. (Contributed by NM, 11-May-1993.)
Assertion
Ref Expression
con34b ((𝜑𝜓) ↔ (¬ 𝜓 → ¬ 𝜑))

Proof of Theorem con34b
StepHypRef Expression
1 con3 153 . 2 ((𝜑𝜓) → (¬ 𝜓 → ¬ 𝜑))
2 con4 113 . 2 ((¬ 𝜓 → ¬ 𝜑) → (𝜑𝜓))
31, 2impbii 209 1 ((𝜑𝜓) ↔ (¬ 𝜓 → ¬ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  mtt  364  pm4.14  806  dfbi3  1049  ifpdfbi  1070  r19.23v  3168  raldifsni  4771  dff14a  7263  weniso  7347  dfom2  7863  dfsup2  9456  wemapsolem  9564  pwfseqlem3  10674  indstr  12932  rpnnen2lem12  16243  algcvgblem  16596  isirred2  20381  isdomn2OLD  20672  isdomn3  20675  ist0-3  23283  mdegleb  26021  dchrelbas4  27206  toslublem  32952  tosglblem  32954  bj-alcomexcom  36698  poimirlem25  37669  poimirlem30  37674  tsbi3  38159  ntrneikb  44118  fulltermc  49396  aacllem  49665
  Copyright terms: Public domain W3C validator