| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con34b | Structured version Visualization version GIF version | ||
| Description: A biconditional form of contraposition. Theorem *4.1 of [WhiteheadRussell] p. 116. (Contributed by NM, 11-May-1993.) |
| Ref | Expression |
|---|---|
| con34b | ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜓 → ¬ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con3 153 | . 2 ⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) | |
| 2 | con4 113 | . 2 ⊢ ((¬ 𝜓 → ¬ 𝜑) → (𝜑 → 𝜓)) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜓 → ¬ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: mtt 364 pm4.14 806 dfbi3 1049 ifpdfbi 1070 r19.23v 3162 raldifsni 4762 dff14a 7248 weniso 7332 dfom2 7847 dfsup2 9402 wemapsolem 9510 pwfseqlem3 10620 indstr 12882 rpnnen2lem12 16200 algcvgblem 16554 isirred2 20337 isdomn2OLD 20628 isdomn3 20631 ist0-3 23239 mdegleb 25976 dchrelbas4 27161 toslublem 32905 tosglblem 32907 bj-alcomexcom 36675 poimirlem25 37646 poimirlem30 37651 tsbi3 38136 ntrneikb 44090 fulltermc 49504 aacllem 49794 |
| Copyright terms: Public domain | W3C validator |