Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > con34b | Structured version Visualization version GIF version |
Description: A biconditional form of contraposition. Theorem *4.1 of [WhiteheadRussell] p. 116. (Contributed by NM, 11-May-1993.) |
Ref | Expression |
---|---|
con34b | ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜓 → ¬ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con3 153 | . 2 ⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) | |
2 | con4 113 | . 2 ⊢ ((¬ 𝜓 → ¬ 𝜑) → (𝜑 → 𝜓)) | |
3 | 1, 2 | impbii 208 | 1 ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜓 → ¬ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: mtt 364 pm4.14 804 dfbi3 1047 ifpdfbi 1068 r19.23v 3175 raldifsni 4741 dff14a 7193 weniso 7275 dfom2 7774 dfsup2 9293 wemapsolem 9399 pwfseqlem3 10509 indstr 12749 rpnnen2lem12 16025 algcvgblem 16371 isirred2 20030 isdomn2 20668 ist0-3 22594 mdegleb 25327 dchrelbas4 26489 toslublem 31450 tosglblem 31452 bj-alcomexcom 34953 poimirlem25 35900 poimirlem30 35905 tsbi3 36391 isdomn3 41280 ntrneikb 42014 aacllem 46845 |
Copyright terms: Public domain | W3C validator |