MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  con34b Structured version   Visualization version   GIF version

Theorem con34b 316
Description: A biconditional form of contraposition. Theorem *4.1 of [WhiteheadRussell] p. 116. (Contributed by NM, 11-May-1993.)
Assertion
Ref Expression
con34b ((𝜑𝜓) ↔ (¬ 𝜓 → ¬ 𝜑))

Proof of Theorem con34b
StepHypRef Expression
1 con3 153 . 2 ((𝜑𝜓) → (¬ 𝜓 → ¬ 𝜑))
2 con4 113 . 2 ((¬ 𝜓 → ¬ 𝜑) → (𝜑𝜓))
31, 2impbii 209 1 ((𝜑𝜓) ↔ (¬ 𝜓 → ¬ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  mtt  364  pm4.14  806  dfbi3  1050  ifpdfbi  1071  r19.23v  3189  raldifsni  4820  dff14a  7307  weniso  7390  dfom2  7905  dfsup2  9513  wemapsolem  9619  pwfseqlem3  10729  indstr  12981  rpnnen2lem12  16273  algcvgblem  16624  isirred2  20447  isdomn2OLD  20734  isdomn3  20737  ist0-3  23374  mdegleb  26123  dchrelbas4  27305  toslublem  32945  tosglblem  32947  bj-alcomexcom  36646  poimirlem25  37605  poimirlem30  37610  tsbi3  38095  ntrneikb  44056  aacllem  48895
  Copyright terms: Public domain W3C validator