| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con34b | Structured version Visualization version GIF version | ||
| Description: A biconditional form of contraposition. Theorem *4.1 of [WhiteheadRussell] p. 116. (Contributed by NM, 11-May-1993.) |
| Ref | Expression |
|---|---|
| con34b | ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜓 → ¬ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con3 153 | . 2 ⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) | |
| 2 | con4 113 | . 2 ⊢ ((¬ 𝜓 → ¬ 𝜑) → (𝜑 → 𝜓)) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜓 → ¬ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: mtt 364 pm4.14 806 dfbi3 1049 ifpdfbi 1070 r19.23v 3159 raldifsni 4747 dff14a 7204 weniso 7288 dfom2 7798 dfsup2 9328 wemapsolem 9436 pwfseqlem3 10548 indstr 12811 rpnnen2lem12 16131 algcvgblem 16485 isirred2 20337 isdomn2OLD 20625 isdomn3 20628 ist0-3 23258 mdegleb 25994 dchrelbas4 27179 toslublem 32948 tosglblem 32950 bj-alcomexcom 36713 poimirlem25 37684 poimirlem30 37689 tsbi3 38174 ntrneikb 44126 fulltermc 49542 aacllem 49832 |
| Copyright terms: Public domain | W3C validator |