| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con34b | Structured version Visualization version GIF version | ||
| Description: A biconditional form of contraposition. Theorem *4.1 of [WhiteheadRussell] p. 116. (Contributed by NM, 11-May-1993.) |
| Ref | Expression |
|---|---|
| con34b | ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜓 → ¬ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con3 153 | . 2 ⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) | |
| 2 | con4 113 | . 2 ⊢ ((¬ 𝜓 → ¬ 𝜑) → (𝜑 → 𝜓)) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜓 → ¬ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: mtt 364 pm4.14 806 dfbi3 1049 ifpdfbi 1070 r19.23v 3156 raldifsni 4749 dff14a 7211 weniso 7295 dfom2 7808 dfsup2 9353 wemapsolem 9461 pwfseqlem3 10573 indstr 12835 rpnnen2lem12 16152 algcvgblem 16506 isirred2 20324 isdomn2OLD 20615 isdomn3 20618 ist0-3 23248 mdegleb 25985 dchrelbas4 27170 toslublem 32927 tosglblem 32929 bj-alcomexcom 36653 poimirlem25 37624 poimirlem30 37629 tsbi3 38114 ntrneikb 44067 fulltermc 49497 aacllem 49787 |
| Copyright terms: Public domain | W3C validator |