Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > con34b | Structured version Visualization version GIF version |
Description: A biconditional form of contraposition. Theorem *4.1 of [WhiteheadRussell] p. 116. (Contributed by NM, 11-May-1993.) |
Ref | Expression |
---|---|
con34b | ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜓 → ¬ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con3 153 | . 2 ⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) | |
2 | con4 113 | . 2 ⊢ ((¬ 𝜓 → ¬ 𝜑) → (𝜑 → 𝜓)) | |
3 | 1, 2 | impbii 208 | 1 ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜓 → ¬ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: mtt 365 pm4.14 804 dfbi3 1047 ifpdfbi 1068 r19.23v 3208 raldifsni 4728 dff14a 7143 weniso 7225 dfom2 7714 dfsup2 9203 wemapsolem 9309 pwfseqlem3 10416 indstr 12656 rpnnen2lem12 15934 algcvgblem 16282 isirred2 19943 isdomn2 20570 ist0-3 22496 mdegleb 25229 dchrelbas4 26391 toslublem 31250 tosglblem 31252 poimirlem25 35802 poimirlem30 35807 tsbi3 36293 isdomn3 41029 ntrneikb 41704 aacllem 46505 |
Copyright terms: Public domain | W3C validator |