| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con34b | Structured version Visualization version GIF version | ||
| Description: A biconditional form of contraposition. Theorem *4.1 of [WhiteheadRussell] p. 116. (Contributed by NM, 11-May-1993.) |
| Ref | Expression |
|---|---|
| con34b | ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜓 → ¬ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con3 153 | . 2 ⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) | |
| 2 | con4 113 | . 2 ⊢ ((¬ 𝜓 → ¬ 𝜑) → (𝜑 → 𝜓)) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜓 → ¬ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: mtt 364 pm4.14 806 dfbi3 1049 ifpdfbi 1070 r19.23v 3160 raldifsni 4746 dff14a 7210 weniso 7294 dfom2 7804 dfsup2 9335 wemapsolem 9443 pwfseqlem3 10558 indstr 12816 rpnnen2lem12 16136 algcvgblem 16490 isirred2 20341 isdomn2OLD 20629 isdomn3 20632 ist0-3 23261 mdegleb 25997 dchrelbas4 27182 toslublem 32960 tosglblem 32962 bj-alcomexcom 36745 poimirlem25 37705 poimirlem30 37710 tsbi3 38195 ntrneikb 44211 fulltermc 49636 aacllem 49926 |
| Copyright terms: Public domain | W3C validator |