![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > con34b | Structured version Visualization version GIF version |
Description: A biconditional form of contraposition. Theorem *4.1 of [WhiteheadRussell] p. 116. (Contributed by NM, 11-May-1993.) |
Ref | Expression |
---|---|
con34b | ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜓 → ¬ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con3 153 | . 2 ⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) | |
2 | con4 113 | . 2 ⊢ ((¬ 𝜓 → ¬ 𝜑) → (𝜑 → 𝜓)) | |
3 | 1, 2 | impbii 209 | 1 ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜓 → ¬ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: mtt 364 pm4.14 806 dfbi3 1050 ifpdfbi 1071 r19.23v 3189 raldifsni 4820 dff14a 7307 weniso 7390 dfom2 7905 dfsup2 9513 wemapsolem 9619 pwfseqlem3 10729 indstr 12981 rpnnen2lem12 16273 algcvgblem 16624 isirred2 20447 isdomn2OLD 20734 isdomn3 20737 ist0-3 23374 mdegleb 26123 dchrelbas4 27305 toslublem 32945 tosglblem 32947 bj-alcomexcom 36646 poimirlem25 37605 poimirlem30 37610 tsbi3 38095 ntrneikb 44056 aacllem 48895 |
Copyright terms: Public domain | W3C validator |