| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con34b | Structured version Visualization version GIF version | ||
| Description: A biconditional form of contraposition. Theorem *4.1 of [WhiteheadRussell] p. 116. (Contributed by NM, 11-May-1993.) |
| Ref | Expression |
|---|---|
| con34b | ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜓 → ¬ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con3 153 | . 2 ⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) | |
| 2 | con4 113 | . 2 ⊢ ((¬ 𝜓 → ¬ 𝜑) → (𝜑 → 𝜓)) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜓 → ¬ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: mtt 364 pm4.14 806 dfbi3 1049 ifpdfbi 1070 r19.23v 3168 raldifsni 4771 dff14a 7263 weniso 7347 dfom2 7863 dfsup2 9456 wemapsolem 9564 pwfseqlem3 10674 indstr 12932 rpnnen2lem12 16243 algcvgblem 16596 isirred2 20381 isdomn2OLD 20672 isdomn3 20675 ist0-3 23283 mdegleb 26021 dchrelbas4 27206 toslublem 32952 tosglblem 32954 bj-alcomexcom 36698 poimirlem25 37669 poimirlem30 37674 tsbi3 38159 ntrneikb 44118 fulltermc 49396 aacllem 49665 |
| Copyright terms: Public domain | W3C validator |