MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  con34b Structured version   Visualization version   GIF version

Theorem con34b 316
Description: A biconditional form of contraposition. Theorem *4.1 of [WhiteheadRussell] p. 116. (Contributed by NM, 11-May-1993.)
Assertion
Ref Expression
con34b ((𝜑𝜓) ↔ (¬ 𝜓 → ¬ 𝜑))

Proof of Theorem con34b
StepHypRef Expression
1 con3 153 . 2 ((𝜑𝜓) → (¬ 𝜓 → ¬ 𝜑))
2 con4 113 . 2 ((¬ 𝜓 → ¬ 𝜑) → (𝜑𝜓))
31, 2impbii 209 1 ((𝜑𝜓) ↔ (¬ 𝜓 → ¬ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  mtt  364  pm4.14  806  dfbi3  1049  ifpdfbi  1070  r19.23v  3162  raldifsni  4762  dff14a  7248  weniso  7332  dfom2  7847  dfsup2  9402  wemapsolem  9510  pwfseqlem3  10620  indstr  12882  rpnnen2lem12  16200  algcvgblem  16554  isirred2  20337  isdomn2OLD  20628  isdomn3  20631  ist0-3  23239  mdegleb  25976  dchrelbas4  27161  toslublem  32905  tosglblem  32907  bj-alcomexcom  36675  poimirlem25  37646  poimirlem30  37651  tsbi3  38136  ntrneikb  44090  fulltermc  49504  aacllem  49794
  Copyright terms: Public domain W3C validator