Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > con34b | Structured version Visualization version GIF version |
Description: A biconditional form of contraposition. Theorem *4.1 of [WhiteheadRussell] p. 116. (Contributed by NM, 11-May-1993.) |
Ref | Expression |
---|---|
con34b | ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜓 → ¬ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con3 153 | . 2 ⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) | |
2 | con4 113 | . 2 ⊢ ((¬ 𝜓 → ¬ 𝜑) → (𝜑 → 𝜓)) | |
3 | 1, 2 | impbii 208 | 1 ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜓 → ¬ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: mtt 364 pm4.14 803 dfbi3 1046 ifpdfbi 1067 r19.23v 3207 raldifsni 4725 dff14a 7124 weniso 7205 dfom2 7689 dfsup2 9133 wemapsolem 9239 pwfseqlem3 10347 indstr 12585 rpnnen2lem12 15862 algcvgblem 16210 isirred2 19858 isdomn2 20483 ist0-3 22404 mdegleb 25134 dchrelbas4 26296 toslublem 31152 tosglblem 31154 poimirlem25 35729 poimirlem30 35734 tsbi3 36220 isdomn3 40945 ntrneikb 41593 aacllem 46391 |
Copyright terms: Public domain | W3C validator |