Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > biantr | Structured version Visualization version GIF version |
Description: A transitive law of equivalence. Compare Theorem *4.22 of [WhiteheadRussell] p. 117. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
biantr | ⊢ (((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜓)) → (𝜑 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ ((𝜒 ↔ 𝜓) → (𝜒 ↔ 𝜓)) | |
2 | 1 | bibi2d 342 | . 2 ⊢ ((𝜒 ↔ 𝜓) → ((𝜑 ↔ 𝜒) ↔ (𝜑 ↔ 𝜓))) |
3 | 2 | biimparc 479 | 1 ⊢ (((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜓)) → (𝜑 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: axextmo 2713 bitr3VD 42358 sbcoreleleqVD 42368 trsbcVD 42386 sbcssgVD 42392 |
Copyright terms: Public domain | W3C validator |