|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > biantr | Structured version Visualization version GIF version | ||
| Description: A transitive law of equivalence. Compare Theorem *4.22 of [WhiteheadRussell] p. 117. (Contributed by NM, 18-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| biantr | ⊢ (((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜓)) → (𝜑 ↔ 𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ ((𝜒 ↔ 𝜓) → (𝜒 ↔ 𝜓)) | |
| 2 | 1 | bibi2d 342 | . 2 ⊢ ((𝜒 ↔ 𝜓) → ((𝜑 ↔ 𝜒) ↔ (𝜑 ↔ 𝜓))) | 
| 3 | 2 | biimparc 479 | 1 ⊢ (((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜓)) → (𝜑 ↔ 𝜒)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 | 
| This theorem is referenced by: axextmo 2712 bitr3VD 44869 sbcoreleleqVD 44879 trsbcVD 44897 sbcssgVD 44903 | 
| Copyright terms: Public domain | W3C validator |