MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndvdssub Structured version   Visualization version   GIF version

Theorem ndvdssub 15417
Description: Corollary of the division algorithm. If an integer 𝐷 greater than 1 divides 𝑁, then it does not divide any of 𝑁 − 1, 𝑁 − 2... 𝑁 − (𝐷 − 1). (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
ndvdssub ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (𝐷𝑁 → ¬ 𝐷 ∥ (𝑁𝐾)))

Proof of Theorem ndvdssub
Dummy variables 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnnn0 11548 . . . . . . . 8 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ0)
2 nnne0 11312 . . . . . . . 8 (𝐾 ∈ ℕ → 𝐾 ≠ 0)
31, 2jca 507 . . . . . . 7 (𝐾 ∈ ℕ → (𝐾 ∈ ℕ0𝐾 ≠ 0))
4 df-ne 2938 . . . . . . . . . . . 12 (𝐾 ≠ 0 ↔ ¬ 𝐾 = 0)
54anbi2i 616 . . . . . . . . . . 11 ((𝐾 < 𝐷𝐾 ≠ 0) ↔ (𝐾 < 𝐷 ∧ ¬ 𝐾 = 0))
6 divalg2 15413 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∃!𝑟 ∈ ℕ0 (𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)))
7 breq1 4814 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 = 𝑥 → (𝑟 < 𝐷𝑥 < 𝐷))
8 oveq2 6852 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟 = 𝑥 → (𝑁𝑟) = (𝑁𝑥))
98breq2d 4823 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 = 𝑥 → (𝐷 ∥ (𝑁𝑟) ↔ 𝐷 ∥ (𝑁𝑥)))
107, 9anbi12d 624 . . . . . . . . . . . . . . . . . . . 20 (𝑟 = 𝑥 → ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ↔ (𝑥 < 𝐷𝐷 ∥ (𝑁𝑥))))
1110reu4 3561 . . . . . . . . . . . . . . . . . . 19 (∃!𝑟 ∈ ℕ0 (𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ↔ (∃𝑟 ∈ ℕ0 (𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ ∀𝑟 ∈ ℕ0𝑥 ∈ ℕ0 (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (𝑥 < 𝐷𝐷 ∥ (𝑁𝑥))) → 𝑟 = 𝑥)))
126, 11sylib 209 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (∃𝑟 ∈ ℕ0 (𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ ∀𝑟 ∈ ℕ0𝑥 ∈ ℕ0 (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (𝑥 < 𝐷𝐷 ∥ (𝑁𝑥))) → 𝑟 = 𝑥)))
13 nngt0 11308 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐷 ∈ ℕ → 0 < 𝐷)
14133ad2ant2 1164 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → 0 < 𝐷)
15 zcn 11631 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
1615subid1d 10637 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℤ → (𝑁 − 0) = 𝑁)
1716breq2d 4823 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℤ → (𝐷 ∥ (𝑁 − 0) ↔ 𝐷𝑁))
1817biimpar 469 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ ℤ ∧ 𝐷𝑁) → 𝐷 ∥ (𝑁 − 0))
19183adant2 1161 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → 𝐷 ∥ (𝑁 − 0))
2014, 19jca 507 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → (0 < 𝐷𝐷 ∥ (𝑁 − 0)))
21203expa 1147 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ 𝐷𝑁) → (0 < 𝐷𝐷 ∥ (𝑁 − 0)))
2221anim2i 610 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ 𝐷𝑁)) → ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (0 < 𝐷𝐷 ∥ (𝑁 − 0))))
2322ancoms 450 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ 𝐷𝑁) ∧ (𝑟 < 𝐷𝐷 ∥ (𝑁𝑟))) → ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (0 < 𝐷𝐷 ∥ (𝑁 − 0))))
24 0nn0 11557 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℕ0
25 breq1 4814 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = 0 → (𝑥 < 𝐷 ↔ 0 < 𝐷))
26 oveq2 6852 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 = 0 → (𝑁𝑥) = (𝑁 − 0))
2726breq2d 4823 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = 0 → (𝐷 ∥ (𝑁𝑥) ↔ 𝐷 ∥ (𝑁 − 0)))
2825, 27anbi12d 624 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 0 → ((𝑥 < 𝐷𝐷 ∥ (𝑁𝑥)) ↔ (0 < 𝐷𝐷 ∥ (𝑁 − 0))))
2928anbi2d 622 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 0 → (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (𝑥 < 𝐷𝐷 ∥ (𝑁𝑥))) ↔ ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (0 < 𝐷𝐷 ∥ (𝑁 − 0)))))
30 eqeq2 2776 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 0 → (𝑟 = 𝑥𝑟 = 0))
3129, 30imbi12d 335 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 0 → ((((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (𝑥 < 𝐷𝐷 ∥ (𝑁𝑥))) → 𝑟 = 𝑥) ↔ (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (0 < 𝐷𝐷 ∥ (𝑁 − 0))) → 𝑟 = 0)))
3231rspcv 3458 . . . . . . . . . . . . . . . . . . . . . 22 (0 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (𝑥 < 𝐷𝐷 ∥ (𝑁𝑥))) → 𝑟 = 𝑥) → (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (0 < 𝐷𝐷 ∥ (𝑁 − 0))) → 𝑟 = 0)))
3324, 32ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑥 ∈ ℕ0 (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (𝑥 < 𝐷𝐷 ∥ (𝑁𝑥))) → 𝑟 = 𝑥) → (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (0 < 𝐷𝐷 ∥ (𝑁 − 0))) → 𝑟 = 0))
3423, 33syl5 34 . . . . . . . . . . . . . . . . . . . 20 (∀𝑥 ∈ ℕ0 (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (𝑥 < 𝐷𝐷 ∥ (𝑁𝑥))) → 𝑟 = 𝑥) → ((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ 𝐷𝑁) ∧ (𝑟 < 𝐷𝐷 ∥ (𝑁𝑟))) → 𝑟 = 0))
3534expd 404 . . . . . . . . . . . . . . . . . . 19 (∀𝑥 ∈ ℕ0 (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (𝑥 < 𝐷𝐷 ∥ (𝑁𝑥))) → 𝑟 = 𝑥) → (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ 𝐷𝑁) → ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0)))
3635ralimi 3099 . . . . . . . . . . . . . . . . . 18 (∀𝑟 ∈ ℕ0𝑥 ∈ ℕ0 (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (𝑥 < 𝐷𝐷 ∥ (𝑁𝑥))) → 𝑟 = 𝑥) → ∀𝑟 ∈ ℕ0 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ 𝐷𝑁) → ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0)))
3712, 36simpl2im 497 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∀𝑟 ∈ ℕ0 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ 𝐷𝑁) → ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0)))
38 r19.21v 3107 . . . . . . . . . . . . . . . . 17 (∀𝑟 ∈ ℕ0 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ 𝐷𝑁) → ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0)) ↔ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ 𝐷𝑁) → ∀𝑟 ∈ ℕ0 ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0)))
3937, 38sylib 209 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ 𝐷𝑁) → ∀𝑟 ∈ ℕ0 ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0)))
4039expd 404 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝐷𝑁 → ∀𝑟 ∈ ℕ0 ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0))))
4140pm2.43i 52 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝐷𝑁 → ∀𝑟 ∈ ℕ0 ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0)))
42413impia 1145 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → ∀𝑟 ∈ ℕ0 ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0))
43 breq1 4814 . . . . . . . . . . . . . . . 16 (𝑟 = 𝐾 → (𝑟 < 𝐷𝐾 < 𝐷))
44 oveq2 6852 . . . . . . . . . . . . . . . . 17 (𝑟 = 𝐾 → (𝑁𝑟) = (𝑁𝐾))
4544breq2d 4823 . . . . . . . . . . . . . . . 16 (𝑟 = 𝐾 → (𝐷 ∥ (𝑁𝑟) ↔ 𝐷 ∥ (𝑁𝐾)))
4643, 45anbi12d 624 . . . . . . . . . . . . . . 15 (𝑟 = 𝐾 → ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ↔ (𝐾 < 𝐷𝐷 ∥ (𝑁𝐾))))
47 eqeq1 2769 . . . . . . . . . . . . . . 15 (𝑟 = 𝐾 → (𝑟 = 0 ↔ 𝐾 = 0))
4846, 47imbi12d 335 . . . . . . . . . . . . . 14 (𝑟 = 𝐾 → (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0) ↔ ((𝐾 < 𝐷𝐷 ∥ (𝑁𝐾)) → 𝐾 = 0)))
4948rspcv 3458 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ0 → (∀𝑟 ∈ ℕ0 ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0) → ((𝐾 < 𝐷𝐷 ∥ (𝑁𝐾)) → 𝐾 = 0)))
5042, 49syl5com 31 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → (𝐾 ∈ ℕ0 → ((𝐾 < 𝐷𝐷 ∥ (𝑁𝐾)) → 𝐾 = 0)))
51 pm4.14 841 . . . . . . . . . . . 12 (((𝐾 < 𝐷𝐷 ∥ (𝑁𝐾)) → 𝐾 = 0) ↔ ((𝐾 < 𝐷 ∧ ¬ 𝐾 = 0) → ¬ 𝐷 ∥ (𝑁𝐾)))
5250, 51syl6ib 242 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → (𝐾 ∈ ℕ0 → ((𝐾 < 𝐷 ∧ ¬ 𝐾 = 0) → ¬ 𝐷 ∥ (𝑁𝐾))))
535, 52syl7bi 246 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → (𝐾 ∈ ℕ0 → ((𝐾 < 𝐷𝐾 ≠ 0) → ¬ 𝐷 ∥ (𝑁𝐾))))
5453exp4a 422 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → (𝐾 ∈ ℕ0 → (𝐾 < 𝐷 → (𝐾 ≠ 0 → ¬ 𝐷 ∥ (𝑁𝐾)))))
5554com23 86 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → (𝐾 < 𝐷 → (𝐾 ∈ ℕ0 → (𝐾 ≠ 0 → ¬ 𝐷 ∥ (𝑁𝐾)))))
5655imp4a 413 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → (𝐾 < 𝐷 → ((𝐾 ∈ ℕ0𝐾 ≠ 0) → ¬ 𝐷 ∥ (𝑁𝐾))))
573, 56syl7 74 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → (𝐾 < 𝐷 → (𝐾 ∈ ℕ → ¬ 𝐷 ∥ (𝑁𝐾))))
5857com23 86 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → (𝐾 ∈ ℕ → (𝐾 < 𝐷 → ¬ 𝐷 ∥ (𝑁𝐾))))
5958impd 398 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → ((𝐾 ∈ ℕ ∧ 𝐾 < 𝐷) → ¬ 𝐷 ∥ (𝑁𝐾)))
60593expia 1150 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝐷𝑁 → ((𝐾 ∈ ℕ ∧ 𝐾 < 𝐷) → ¬ 𝐷 ∥ (𝑁𝐾))))
6160com23 86 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ((𝐾 ∈ ℕ ∧ 𝐾 < 𝐷) → (𝐷𝑁 → ¬ 𝐷 ∥ (𝑁𝐾))))
62613impia 1145 1 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (𝐷𝑁 → ¬ 𝐷 ∥ (𝑁𝐾)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937  wral 3055  wrex 3056  ∃!wreu 3057   class class class wbr 4811  (class class class)co 6844  0cc0 10191   < clt 10330  cmin 10522  cn 11276  0cn0 11540  cz 11626  cdvds 15268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7149  ax-cnex 10247  ax-resscn 10248  ax-1cn 10249  ax-icn 10250  ax-addcl 10251  ax-addrcl 10252  ax-mulcl 10253  ax-mulrcl 10254  ax-mulcom 10255  ax-addass 10256  ax-mulass 10257  ax-distr 10258  ax-i2m1 10259  ax-1ne0 10260  ax-1rid 10261  ax-rnegex 10262  ax-rrecex 10263  ax-cnre 10264  ax-pre-lttri 10265  ax-pre-lttrn 10266  ax-pre-ltadd 10267  ax-pre-mulgt0 10268  ax-pre-sup 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6805  df-ov 6847  df-oprab 6848  df-mpt2 6849  df-om 7266  df-1st 7368  df-2nd 7369  df-wrecs 7612  df-recs 7674  df-rdg 7712  df-er 7949  df-en 8163  df-dom 8164  df-sdom 8165  df-sup 8557  df-inf 8558  df-pnf 10332  df-mnf 10333  df-xr 10334  df-ltxr 10335  df-le 10336  df-sub 10524  df-neg 10525  df-div 10941  df-nn 11277  df-2 11337  df-3 11338  df-n0 11541  df-z 11627  df-uz 11890  df-rp 12032  df-fz 12537  df-seq 13012  df-exp 13071  df-cj 14127  df-re 14128  df-im 14129  df-sqrt 14263  df-abs 14264  df-dvds 15269
This theorem is referenced by:  ndvdsadd  15418
  Copyright terms: Public domain W3C validator