MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndvdssub Structured version   Visualization version   GIF version

Theorem ndvdssub 16354
Description: Corollary of the division algorithm. If an integer 𝐷 greater than 1 divides 𝑁, then it does not divide any of 𝑁 − 1, 𝑁 − 2... 𝑁 − (𝐷 − 1). (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
ndvdssub ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (𝐷𝑁 → ¬ 𝐷 ∥ (𝑁𝐾)))

Proof of Theorem ndvdssub
Dummy variables 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnnn0 12481 . . . . . . 7 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ0)
2 nnne0 12248 . . . . . . 7 (𝐾 ∈ ℕ → 𝐾 ≠ 0)
31, 2jca 512 . . . . . 6 (𝐾 ∈ ℕ → (𝐾 ∈ ℕ0𝐾 ≠ 0))
4 df-ne 2941 . . . . . . . . . . 11 (𝐾 ≠ 0 ↔ ¬ 𝐾 = 0)
54anbi2i 623 . . . . . . . . . 10 ((𝐾 < 𝐷𝐾 ≠ 0) ↔ (𝐾 < 𝐷 ∧ ¬ 𝐾 = 0))
6 divalg2 16350 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∃!𝑟 ∈ ℕ0 (𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)))
7 breq1 5151 . . . . . . . . . . . . . . . . . . . 20 (𝑟 = 𝑥 → (𝑟 < 𝐷𝑥 < 𝐷))
8 oveq2 7419 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 = 𝑥 → (𝑁𝑟) = (𝑁𝑥))
98breq2d 5160 . . . . . . . . . . . . . . . . . . . 20 (𝑟 = 𝑥 → (𝐷 ∥ (𝑁𝑟) ↔ 𝐷 ∥ (𝑁𝑥)))
107, 9anbi12d 631 . . . . . . . . . . . . . . . . . . 19 (𝑟 = 𝑥 → ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ↔ (𝑥 < 𝐷𝐷 ∥ (𝑁𝑥))))
1110reu4 3727 . . . . . . . . . . . . . . . . . 18 (∃!𝑟 ∈ ℕ0 (𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ↔ (∃𝑟 ∈ ℕ0 (𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ ∀𝑟 ∈ ℕ0𝑥 ∈ ℕ0 (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (𝑥 < 𝐷𝐷 ∥ (𝑁𝑥))) → 𝑟 = 𝑥)))
126, 11sylib 217 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (∃𝑟 ∈ ℕ0 (𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ ∀𝑟 ∈ ℕ0𝑥 ∈ ℕ0 (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (𝑥 < 𝐷𝐷 ∥ (𝑁𝑥))) → 𝑟 = 𝑥)))
13 nngt0 12245 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐷 ∈ ℕ → 0 < 𝐷)
14133ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → 0 < 𝐷)
15 zcn 12565 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
1615subid1d 11562 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℤ → (𝑁 − 0) = 𝑁)
1716breq2d 5160 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℤ → (𝐷 ∥ (𝑁 − 0) ↔ 𝐷𝑁))
1817biimpar 478 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℤ ∧ 𝐷𝑁) → 𝐷 ∥ (𝑁 − 0))
19183adant2 1131 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → 𝐷 ∥ (𝑁 − 0))
2014, 19jca 512 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → (0 < 𝐷𝐷 ∥ (𝑁 − 0)))
21203expa 1118 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ 𝐷𝑁) → (0 < 𝐷𝐷 ∥ (𝑁 − 0)))
2221anim1ci 616 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ 𝐷𝑁) ∧ (𝑟 < 𝐷𝐷 ∥ (𝑁𝑟))) → ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (0 < 𝐷𝐷 ∥ (𝑁 − 0))))
23 0nn0 12489 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ ℕ0
24 breq1 5151 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 0 → (𝑥 < 𝐷 ↔ 0 < 𝐷))
25 oveq2 7419 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = 0 → (𝑁𝑥) = (𝑁 − 0))
2625breq2d 5160 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 0 → (𝐷 ∥ (𝑁𝑥) ↔ 𝐷 ∥ (𝑁 − 0)))
2724, 26anbi12d 631 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 0 → ((𝑥 < 𝐷𝐷 ∥ (𝑁𝑥)) ↔ (0 < 𝐷𝐷 ∥ (𝑁 − 0))))
2827anbi2d 629 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 0 → (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (𝑥 < 𝐷𝐷 ∥ (𝑁𝑥))) ↔ ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (0 < 𝐷𝐷 ∥ (𝑁 − 0)))))
29 eqeq2 2744 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 0 → (𝑟 = 𝑥𝑟 = 0))
3028, 29imbi12d 344 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 0 → ((((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (𝑥 < 𝐷𝐷 ∥ (𝑁𝑥))) → 𝑟 = 𝑥) ↔ (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (0 < 𝐷𝐷 ∥ (𝑁 − 0))) → 𝑟 = 0)))
3130rspcv 3608 . . . . . . . . . . . . . . . . . . . . 21 (0 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (𝑥 < 𝐷𝐷 ∥ (𝑁𝑥))) → 𝑟 = 𝑥) → (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (0 < 𝐷𝐷 ∥ (𝑁 − 0))) → 𝑟 = 0)))
3223, 31ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 (∀𝑥 ∈ ℕ0 (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (𝑥 < 𝐷𝐷 ∥ (𝑁𝑥))) → 𝑟 = 𝑥) → (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (0 < 𝐷𝐷 ∥ (𝑁 − 0))) → 𝑟 = 0))
3322, 32syl5 34 . . . . . . . . . . . . . . . . . . 19 (∀𝑥 ∈ ℕ0 (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (𝑥 < 𝐷𝐷 ∥ (𝑁𝑥))) → 𝑟 = 𝑥) → ((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ 𝐷𝑁) ∧ (𝑟 < 𝐷𝐷 ∥ (𝑁𝑟))) → 𝑟 = 0))
3433expd 416 . . . . . . . . . . . . . . . . . 18 (∀𝑥 ∈ ℕ0 (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (𝑥 < 𝐷𝐷 ∥ (𝑁𝑥))) → 𝑟 = 𝑥) → (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ 𝐷𝑁) → ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0)))
3534ralimi 3083 . . . . . . . . . . . . . . . . 17 (∀𝑟 ∈ ℕ0𝑥 ∈ ℕ0 (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (𝑥 < 𝐷𝐷 ∥ (𝑁𝑥))) → 𝑟 = 𝑥) → ∀𝑟 ∈ ℕ0 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ 𝐷𝑁) → ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0)))
3612, 35simpl2im 504 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∀𝑟 ∈ ℕ0 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ 𝐷𝑁) → ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0)))
37 r19.21v 3179 . . . . . . . . . . . . . . . 16 (∀𝑟 ∈ ℕ0 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ 𝐷𝑁) → ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0)) ↔ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ 𝐷𝑁) → ∀𝑟 ∈ ℕ0 ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0)))
3836, 37sylib 217 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ 𝐷𝑁) → ∀𝑟 ∈ ℕ0 ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0)))
3938expd 416 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝐷𝑁 → ∀𝑟 ∈ ℕ0 ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0))))
4039pm2.43i 52 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝐷𝑁 → ∀𝑟 ∈ ℕ0 ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0)))
41403impia 1117 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → ∀𝑟 ∈ ℕ0 ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0))
42 breq1 5151 . . . . . . . . . . . . . . 15 (𝑟 = 𝐾 → (𝑟 < 𝐷𝐾 < 𝐷))
43 oveq2 7419 . . . . . . . . . . . . . . . 16 (𝑟 = 𝐾 → (𝑁𝑟) = (𝑁𝐾))
4443breq2d 5160 . . . . . . . . . . . . . . 15 (𝑟 = 𝐾 → (𝐷 ∥ (𝑁𝑟) ↔ 𝐷 ∥ (𝑁𝐾)))
4542, 44anbi12d 631 . . . . . . . . . . . . . 14 (𝑟 = 𝐾 → ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ↔ (𝐾 < 𝐷𝐷 ∥ (𝑁𝐾))))
46 eqeq1 2736 . . . . . . . . . . . . . 14 (𝑟 = 𝐾 → (𝑟 = 0 ↔ 𝐾 = 0))
4745, 46imbi12d 344 . . . . . . . . . . . . 13 (𝑟 = 𝐾 → (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0) ↔ ((𝐾 < 𝐷𝐷 ∥ (𝑁𝐾)) → 𝐾 = 0)))
4847rspcv 3608 . . . . . . . . . . . 12 (𝐾 ∈ ℕ0 → (∀𝑟 ∈ ℕ0 ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0) → ((𝐾 < 𝐷𝐷 ∥ (𝑁𝐾)) → 𝐾 = 0)))
4941, 48syl5com 31 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → (𝐾 ∈ ℕ0 → ((𝐾 < 𝐷𝐷 ∥ (𝑁𝐾)) → 𝐾 = 0)))
50 pm4.14 805 . . . . . . . . . . 11 (((𝐾 < 𝐷𝐷 ∥ (𝑁𝐾)) → 𝐾 = 0) ↔ ((𝐾 < 𝐷 ∧ ¬ 𝐾 = 0) → ¬ 𝐷 ∥ (𝑁𝐾)))
5149, 50imbitrdi 250 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → (𝐾 ∈ ℕ0 → ((𝐾 < 𝐷 ∧ ¬ 𝐾 = 0) → ¬ 𝐷 ∥ (𝑁𝐾))))
525, 51syl7bi 254 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → (𝐾 ∈ ℕ0 → ((𝐾 < 𝐷𝐾 ≠ 0) → ¬ 𝐷 ∥ (𝑁𝐾))))
5352exp4a 432 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → (𝐾 ∈ ℕ0 → (𝐾 < 𝐷 → (𝐾 ≠ 0 → ¬ 𝐷 ∥ (𝑁𝐾)))))
5453com23 86 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → (𝐾 < 𝐷 → (𝐾 ∈ ℕ0 → (𝐾 ≠ 0 → ¬ 𝐷 ∥ (𝑁𝐾)))))
5554imp4a 423 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → (𝐾 < 𝐷 → ((𝐾 ∈ ℕ0𝐾 ≠ 0) → ¬ 𝐷 ∥ (𝑁𝐾))))
563, 55syl7 74 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → (𝐾 < 𝐷 → (𝐾 ∈ ℕ → ¬ 𝐷 ∥ (𝑁𝐾))))
5756impcomd 412 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → ((𝐾 ∈ ℕ ∧ 𝐾 < 𝐷) → ¬ 𝐷 ∥ (𝑁𝐾)))
58573expia 1121 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝐷𝑁 → ((𝐾 ∈ ℕ ∧ 𝐾 < 𝐷) → ¬ 𝐷 ∥ (𝑁𝐾))))
5958com23 86 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ((𝐾 ∈ ℕ ∧ 𝐾 < 𝐷) → (𝐷𝑁 → ¬ 𝐷 ∥ (𝑁𝐾))))
60593impia 1117 1 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (𝐷𝑁 → ¬ 𝐷 ∥ (𝑁𝐾)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2940  wral 3061  wrex 3070  ∃!wreu 3374   class class class wbr 5148  (class class class)co 7411  0cc0 11112   < clt 11250  cmin 11446  cn 12214  0cn0 12474  cz 12560  cdvds 16199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-sup 9439  df-inf 9440  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-div 11874  df-nn 12215  df-2 12277  df-3 12278  df-n0 12475  df-z 12561  df-uz 12825  df-rp 12977  df-fz 13487  df-seq 13969  df-exp 14030  df-cj 15048  df-re 15049  df-im 15050  df-sqrt 15184  df-abs 15185  df-dvds 16200
This theorem is referenced by:  ndvdsadd  16355
  Copyright terms: Public domain W3C validator