| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm4.83 | Structured version Visualization version GIF version | ||
| Description: Theorem *4.83 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm4.83 | ⊢ (((𝜑 → 𝜓) ∧ (¬ 𝜑 → 𝜓)) ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmid 894 | . . 3 ⊢ (𝜑 ∨ ¬ 𝜑) | |
| 2 | 1 | a1bi 362 | . 2 ⊢ (𝜓 ↔ ((𝜑 ∨ ¬ 𝜑) → 𝜓)) |
| 3 | jaob 963 | . 2 ⊢ (((𝜑 ∨ ¬ 𝜑) → 𝜓) ↔ ((𝜑 → 𝜓) ∧ (¬ 𝜑 → 𝜓))) | |
| 4 | 2, 3 | bitr2i 276 | 1 ⊢ (((𝜑 → 𝜓) ∧ (¬ 𝜑 → 𝜓)) ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: cases2 1047 dmdbr5ati 32369 cvlsupr3 39304 rp-fakeanorass 43488 |
| Copyright terms: Public domain | W3C validator |