Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm4.83 | Structured version Visualization version GIF version |
Description: Theorem *4.83 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm4.83 | ⊢ (((𝜑 → 𝜓) ∧ (¬ 𝜑 → 𝜓)) ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmid 895 | . . 3 ⊢ (𝜑 ∨ ¬ 𝜑) | |
2 | 1 | a1bi 366 | . 2 ⊢ (𝜓 ↔ ((𝜑 ∨ ¬ 𝜑) → 𝜓)) |
3 | jaob 962 | . 2 ⊢ (((𝜑 ∨ ¬ 𝜑) → 𝜓) ↔ ((𝜑 → 𝜓) ∧ (¬ 𝜑 → 𝜓))) | |
4 | 2, 3 | bitr2i 279 | 1 ⊢ (((𝜑 → 𝜓) ∧ (¬ 𝜑 → 𝜓)) ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∨ wo 847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 |
This theorem is referenced by: cases2 1048 dmdbr5ati 30535 cvlsupr3 37132 rp-fakeanorass 40853 |
Copyright terms: Public domain | W3C validator |