|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > pm4.43 | Structured version Visualization version GIF version | ||
| Description: Theorem *4.43 of [WhiteheadRussell] p. 119. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 26-Nov-2012.) | 
| Ref | Expression | 
|---|---|
| pm4.43 | ⊢ (𝜑 ↔ ((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ ¬ 𝜓))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm3.24 402 | . . 3 ⊢ ¬ (𝜓 ∧ ¬ 𝜓) | |
| 2 | 1 | biorfri 939 | . 2 ⊢ (𝜑 ↔ (𝜑 ∨ (𝜓 ∧ ¬ 𝜓))) | 
| 3 | ordi 1007 | . 2 ⊢ ((𝜑 ∨ (𝜓 ∧ ¬ 𝜓)) ↔ ((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ ¬ 𝜓))) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (𝜑 ↔ ((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ ¬ 𝜓))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 | 
| This theorem is referenced by: stoweidlem26 46046 | 
| Copyright terms: Public domain | W3C validator |