| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bimsc1 | Structured version Visualization version GIF version | ||
| Description: Removal of conjunct from one side of an equivalence. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| bimsc1 | ⊢ (((𝜑 → 𝜓) ∧ (𝜒 ↔ (𝜓 ∧ 𝜑))) → (𝜒 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ ((𝜒 ↔ (𝜓 ∧ 𝜑)) → (𝜒 ↔ (𝜓 ∧ 𝜑))) | |
| 2 | simpr 484 | . . 3 ⊢ ((𝜓 ∧ 𝜑) → 𝜑) | |
| 3 | ancr 546 | . . 3 ⊢ ((𝜑 → 𝜓) → (𝜑 → (𝜓 ∧ 𝜑))) | |
| 4 | 2, 3 | impbid2 226 | . 2 ⊢ ((𝜑 → 𝜓) → ((𝜓 ∧ 𝜑) ↔ 𝜑)) |
| 5 | 1, 4 | sylan9bbr 510 | 1 ⊢ (((𝜑 → 𝜓) ∧ (𝜒 ↔ (𝜓 ∧ 𝜑))) → (𝜒 ↔ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sepexlem 5299 bm1.3iiOLD 5302 bj-bm1.3ii 37065 |
| Copyright terms: Public domain | W3C validator |