Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bimsc1 | Structured version Visualization version GIF version |
Description: Removal of conjunct from one side of an equivalence. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
bimsc1 | ⊢ (((𝜑 → 𝜓) ∧ (𝜒 ↔ (𝜓 ∧ 𝜑))) → (𝜒 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜒 ↔ (𝜓 ∧ 𝜑)) → (𝜒 ↔ (𝜓 ∧ 𝜑))) | |
2 | simpr 485 | . . 3 ⊢ ((𝜓 ∧ 𝜑) → 𝜑) | |
3 | ancr 547 | . . 3 ⊢ ((𝜑 → 𝜓) → (𝜑 → (𝜓 ∧ 𝜑))) | |
4 | 2, 3 | impbid2 225 | . 2 ⊢ ((𝜑 → 𝜓) → ((𝜓 ∧ 𝜑) ↔ 𝜑)) |
5 | 1, 4 | sylan9bbr 511 | 1 ⊢ (((𝜑 → 𝜓) ∧ (𝜒 ↔ (𝜓 ∧ 𝜑))) → (𝜒 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: bm1.3ii 5246 bj-bm1.3ii 35348 |
Copyright terms: Public domain | W3C validator |