MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bimsc1 Structured version   Visualization version   GIF version

Theorem bimsc1 840
Description: Removal of conjunct from one side of an equivalence. (Contributed by NM, 21-Jun-1993.)
Assertion
Ref Expression
bimsc1 (((𝜑𝜓) ∧ (𝜒 ↔ (𝜓𝜑))) → (𝜒𝜑))

Proof of Theorem bimsc1
StepHypRef Expression
1 id 22 . 2 ((𝜒 ↔ (𝜓𝜑)) → (𝜒 ↔ (𝜓𝜑)))
2 simpr 484 . . 3 ((𝜓𝜑) → 𝜑)
3 ancr 546 . . 3 ((𝜑𝜓) → (𝜑 → (𝜓𝜑)))
42, 3impbid2 225 . 2 ((𝜑𝜓) → ((𝜓𝜑) ↔ 𝜑))
51, 4sylan9bbr 510 1 (((𝜑𝜓) ∧ (𝜒 ↔ (𝜓𝜑))) → (𝜒𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  bm1.3ii  5229  bj-bm1.3ii  35214
  Copyright terms: Public domain W3C validator