|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > pm5.16 | Structured version Visualization version GIF version | ||
| Description: Theorem *5.16 of [WhiteheadRussell] p. 124. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 17-Oct-2013.) | 
| Ref | Expression | 
|---|---|
| pm5.16 | ⊢ ¬ ((𝜑 ↔ 𝜓) ∧ (𝜑 ↔ ¬ 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm5.18 381 | . . 3 ⊢ ((𝜑 ↔ 𝜓) ↔ ¬ (𝜑 ↔ ¬ 𝜓)) | |
| 2 | 1 | biimpi 216 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ¬ (𝜑 ↔ ¬ 𝜓)) | 
| 3 | imnan 399 | . 2 ⊢ (((𝜑 ↔ 𝜓) → ¬ (𝜑 ↔ ¬ 𝜓)) ↔ ¬ ((𝜑 ↔ 𝜓) ∧ (𝜑 ↔ ¬ 𝜓))) | |
| 4 | 2, 3 | mpbi 230 | 1 ⊢ ¬ ((𝜑 ↔ 𝜓) ∧ (𝜑 ↔ ¬ 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |