Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm5.15 | Structured version Visualization version GIF version |
Description: Theorem *5.15 of [WhiteheadRussell] p. 124. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 15-Oct-2013.) |
Ref | Expression |
---|---|
pm5.15 | ⊢ ((𝜑 ↔ 𝜓) ∨ (𝜑 ↔ ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xor3 384 | . . 3 ⊢ (¬ (𝜑 ↔ 𝜓) ↔ (𝜑 ↔ ¬ 𝜓)) | |
2 | 1 | biimpi 215 | . 2 ⊢ (¬ (𝜑 ↔ 𝜓) → (𝜑 ↔ ¬ 𝜓)) |
3 | 2 | orri 859 | 1 ⊢ ((𝜑 ↔ 𝜓) ∨ (𝜑 ↔ ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 845 |
This theorem is referenced by: sbc2or 3725 |
Copyright terms: Public domain | W3C validator |