| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xor | Structured version Visualization version GIF version | ||
| Description: Two ways to express exclusive disjunction (df-xor 1512). Theorem *5.22 of [WhiteheadRussell] p. 124. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 22-Jan-2013.) |
| Ref | Expression |
|---|---|
| xor | ⊢ (¬ (𝜑 ↔ 𝜓) ↔ ((𝜑 ∧ ¬ 𝜓) ∨ (𝜓 ∧ ¬ 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iman 401 | . . . 4 ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) | |
| 2 | iman 401 | . . . 4 ⊢ ((𝜓 → 𝜑) ↔ ¬ (𝜓 ∧ ¬ 𝜑)) | |
| 3 | 1, 2 | anbi12i 628 | . . 3 ⊢ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) ↔ (¬ (𝜑 ∧ ¬ 𝜓) ∧ ¬ (𝜓 ∧ ¬ 𝜑))) |
| 4 | dfbi2 474 | . . 3 ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) | |
| 5 | ioran 985 | . . 3 ⊢ (¬ ((𝜑 ∧ ¬ 𝜓) ∨ (𝜓 ∧ ¬ 𝜑)) ↔ (¬ (𝜑 ∧ ¬ 𝜓) ∧ ¬ (𝜓 ∧ ¬ 𝜑))) | |
| 6 | 3, 4, 5 | 3bitr4ri 304 | . 2 ⊢ (¬ ((𝜑 ∧ ¬ 𝜓) ∨ (𝜓 ∧ ¬ 𝜑)) ↔ (𝜑 ↔ 𝜓)) |
| 7 | 6 | con1bii 356 | 1 ⊢ (¬ (𝜑 ↔ 𝜓) ↔ ((𝜑 ∧ ¬ 𝜓) ∨ (𝜓 ∧ ¬ 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: pm5.24 1050 excxor 1516 elsymdif 4238 rpnnen2lem12 16248 ist0-3 23288 eliuniincex 45100 eliincex 45101 abnotataxb 46912 ldepslinc 48452 |
| Copyright terms: Public domain | W3C validator |