Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  xor Structured version   Visualization version   GIF version

Theorem xor 1012
 Description: Two ways to express exclusive disjunction (df-xor 1503). Theorem *5.22 of [WhiteheadRussell] p. 124. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 22-Jan-2013.)
Assertion
Ref Expression
xor (¬ (𝜑𝜓) ↔ ((𝜑 ∧ ¬ 𝜓) ∨ (𝜓 ∧ ¬ 𝜑)))

Proof of Theorem xor
StepHypRef Expression
1 iman 405 . . . 4 ((𝜑𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓))
2 iman 405 . . . 4 ((𝜓𝜑) ↔ ¬ (𝜓 ∧ ¬ 𝜑))
31, 2anbi12i 629 . . 3 (((𝜑𝜓) ∧ (𝜓𝜑)) ↔ (¬ (𝜑 ∧ ¬ 𝜓) ∧ ¬ (𝜓 ∧ ¬ 𝜑)))
4 dfbi2 478 . . 3 ((𝜑𝜓) ↔ ((𝜑𝜓) ∧ (𝜓𝜑)))
5 ioran 981 . . 3 (¬ ((𝜑 ∧ ¬ 𝜓) ∨ (𝜓 ∧ ¬ 𝜑)) ↔ (¬ (𝜑 ∧ ¬ 𝜓) ∧ ¬ (𝜓 ∧ ¬ 𝜑)))
63, 4, 53bitr4ri 307 . 2 (¬ ((𝜑 ∧ ¬ 𝜓) ∨ (𝜓 ∧ ¬ 𝜑)) ↔ (𝜑𝜓))
76con1bii 360 1 (¬ (𝜑𝜓) ↔ ((𝜑 ∧ ¬ 𝜓) ∨ (𝜓 ∧ ¬ 𝜑)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845 This theorem is referenced by:  pm5.24  1046  excxor  1508  elsymdif  4152  rpnnen2lem12  15626  ist0-3  22045  eliuniincex  42118  eliincex  42119  abnotataxb  43875  ldepslinc  45283
 Copyright terms: Public domain W3C validator