Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-bary1lem1 Structured version   Visualization version   GIF version

Theorem bj-bary1lem1 37277
Description: Lemma for bj-bary1 37278: computation of one of the two barycentric coordinates of a barycenter of two points in one dimension (complex line). (Contributed by BJ, 6-Jun-2019.)
Hypotheses
Ref Expression
bj-bary1.a (𝜑𝐴 ∈ ℂ)
bj-bary1.b (𝜑𝐵 ∈ ℂ)
bj-bary1.x (𝜑𝑋 ∈ ℂ)
bj-bary1.neq (𝜑𝐴𝐵)
bj-bary1.s (𝜑𝑆 ∈ ℂ)
bj-bary1.t (𝜑𝑇 ∈ ℂ)
Assertion
Ref Expression
bj-bary1lem1 (𝜑 → ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1) → 𝑇 = ((𝑋𝐴) / (𝐵𝐴))))

Proof of Theorem bj-bary1lem1
StepHypRef Expression
1 bj-bary1.s . . . . . . 7 (𝜑𝑆 ∈ ℂ)
2 bj-bary1.t . . . . . . 7 (𝜑𝑇 ∈ ℂ)
31, 2pncand 11648 . . . . . 6 (𝜑 → ((𝑆 + 𝑇) − 𝑇) = 𝑆)
4 oveq1 7455 . . . . . 6 ((𝑆 + 𝑇) = 1 → ((𝑆 + 𝑇) − 𝑇) = (1 − 𝑇))
5 pm5.31 830 . . . . . 6 ((((𝑆 + 𝑇) − 𝑇) = 𝑆 ∧ ((𝑆 + 𝑇) = 1 → ((𝑆 + 𝑇) − 𝑇) = (1 − 𝑇))) → ((𝑆 + 𝑇) = 1 → (((𝑆 + 𝑇) − 𝑇) = (1 − 𝑇) ∧ ((𝑆 + 𝑇) − 𝑇) = 𝑆)))
63, 4, 5sylancl 585 . . . . 5 (𝜑 → ((𝑆 + 𝑇) = 1 → (((𝑆 + 𝑇) − 𝑇) = (1 − 𝑇) ∧ ((𝑆 + 𝑇) − 𝑇) = 𝑆)))
7 eqtr2 2764 . . . . . 6 ((((𝑆 + 𝑇) − 𝑇) = (1 − 𝑇) ∧ ((𝑆 + 𝑇) − 𝑇) = 𝑆) → (1 − 𝑇) = 𝑆)
87eqcomd 2746 . . . . 5 ((((𝑆 + 𝑇) − 𝑇) = (1 − 𝑇) ∧ ((𝑆 + 𝑇) − 𝑇) = 𝑆) → 𝑆 = (1 − 𝑇))
96, 8syl6 35 . . . 4 (𝜑 → ((𝑆 + 𝑇) = 1 → 𝑆 = (1 − 𝑇)))
10 oveq1 7455 . . . . . . . 8 (𝑆 = (1 − 𝑇) → (𝑆 · 𝐴) = ((1 − 𝑇) · 𝐴))
1110oveq1d 7463 . . . . . . 7 (𝑆 = (1 − 𝑇) → ((𝑆 · 𝐴) + (𝑇 · 𝐵)) = (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐵)))
12 eqtr 2763 . . . . . . 7 ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ ((𝑆 · 𝐴) + (𝑇 · 𝐵)) = (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐵))) → 𝑋 = (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐵)))
1311, 12sylan2 592 . . . . . 6 ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ 𝑆 = (1 − 𝑇)) → 𝑋 = (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐵)))
14 1cnd 11285 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
15 bj-bary1.a . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
1614, 2, 15subdird 11747 . . . . . . . 8 (𝜑 → ((1 − 𝑇) · 𝐴) = ((1 · 𝐴) − (𝑇 · 𝐴)))
1715mullidd 11308 . . . . . . . . 9 (𝜑 → (1 · 𝐴) = 𝐴)
1817oveq1d 7463 . . . . . . . 8 (𝜑 → ((1 · 𝐴) − (𝑇 · 𝐴)) = (𝐴 − (𝑇 · 𝐴)))
1916, 18eqtrd 2780 . . . . . . 7 (𝜑 → ((1 − 𝑇) · 𝐴) = (𝐴 − (𝑇 · 𝐴)))
2019oveq1d 7463 . . . . . 6 (𝜑 → (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐵)) = ((𝐴 − (𝑇 · 𝐴)) + (𝑇 · 𝐵)))
2113, 20sylan9eqr 2802 . . . . 5 ((𝜑 ∧ (𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ 𝑆 = (1 − 𝑇))) → 𝑋 = ((𝐴 − (𝑇 · 𝐴)) + (𝑇 · 𝐵)))
2221ex 412 . . . 4 (𝜑 → ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ 𝑆 = (1 − 𝑇)) → 𝑋 = ((𝐴 − (𝑇 · 𝐴)) + (𝑇 · 𝐵))))
239, 22sylan2d 604 . . 3 (𝜑 → ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1) → 𝑋 = ((𝐴 − (𝑇 · 𝐴)) + (𝑇 · 𝐵))))
242, 15mulcld 11310 . . . . . 6 (𝜑 → (𝑇 · 𝐴) ∈ ℂ)
25 bj-bary1.b . . . . . . 7 (𝜑𝐵 ∈ ℂ)
262, 25mulcld 11310 . . . . . 6 (𝜑 → (𝑇 · 𝐵) ∈ ℂ)
2715, 24, 26subadd23d 11669 . . . . 5 (𝜑 → ((𝐴 − (𝑇 · 𝐴)) + (𝑇 · 𝐵)) = (𝐴 + ((𝑇 · 𝐵) − (𝑇 · 𝐴))))
282, 25, 15subdid 11746 . . . . . . 7 (𝜑 → (𝑇 · (𝐵𝐴)) = ((𝑇 · 𝐵) − (𝑇 · 𝐴)))
2928eqcomd 2746 . . . . . 6 (𝜑 → ((𝑇 · 𝐵) − (𝑇 · 𝐴)) = (𝑇 · (𝐵𝐴)))
3029oveq2d 7464 . . . . 5 (𝜑 → (𝐴 + ((𝑇 · 𝐵) − (𝑇 · 𝐴))) = (𝐴 + (𝑇 · (𝐵𝐴))))
3127, 30eqtrd 2780 . . . 4 (𝜑 → ((𝐴 − (𝑇 · 𝐴)) + (𝑇 · 𝐵)) = (𝐴 + (𝑇 · (𝐵𝐴))))
3231eqeq2d 2751 . . 3 (𝜑 → (𝑋 = ((𝐴 − (𝑇 · 𝐴)) + (𝑇 · 𝐵)) ↔ 𝑋 = (𝐴 + (𝑇 · (𝐵𝐴)))))
3323, 32sylibd 239 . 2 (𝜑 → ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1) → 𝑋 = (𝐴 + (𝑇 · (𝐵𝐴)))))
34 oveq1 7455 . . 3 (𝑋 = (𝐴 + (𝑇 · (𝐵𝐴))) → (𝑋𝐴) = ((𝐴 + (𝑇 · (𝐵𝐴))) − 𝐴))
3525, 15subcld 11647 . . . . . 6 (𝜑 → (𝐵𝐴) ∈ ℂ)
362, 35mulcld 11310 . . . . 5 (𝜑 → (𝑇 · (𝐵𝐴)) ∈ ℂ)
3715, 36pncan2d 11649 . . . 4 (𝜑 → ((𝐴 + (𝑇 · (𝐵𝐴))) − 𝐴) = (𝑇 · (𝐵𝐴)))
3837eqeq2d 2751 . . 3 (𝜑 → ((𝑋𝐴) = ((𝐴 + (𝑇 · (𝐵𝐴))) − 𝐴) ↔ (𝑋𝐴) = (𝑇 · (𝐵𝐴))))
3934, 38imbitrid 244 . 2 (𝜑 → (𝑋 = (𝐴 + (𝑇 · (𝐵𝐴))) → (𝑋𝐴) = (𝑇 · (𝐵𝐴))))
40 eqcom 2747 . . 3 ((𝑋𝐴) = (𝑇 · (𝐵𝐴)) ↔ (𝑇 · (𝐵𝐴)) = (𝑋𝐴))
412, 35mulcomd 11311 . . . . 5 (𝜑 → (𝑇 · (𝐵𝐴)) = ((𝐵𝐴) · 𝑇))
4241eqeq1d 2742 . . . 4 (𝜑 → ((𝑇 · (𝐵𝐴)) = (𝑋𝐴) ↔ ((𝐵𝐴) · 𝑇) = (𝑋𝐴)))
43 bj-bary1.x . . . . . . 7 (𝜑𝑋 ∈ ℂ)
4443, 15subcld 11647 . . . . . 6 (𝜑 → (𝑋𝐴) ∈ ℂ)
45 bj-bary1.neq . . . . . . . 8 (𝜑𝐴𝐵)
4645necomd 3002 . . . . . . 7 (𝜑𝐵𝐴)
4725, 15, 46subne0d 11656 . . . . . 6 (𝜑 → (𝐵𝐴) ≠ 0)
4835, 2, 44, 47rdiv 12129 . . . . 5 (𝜑 → (((𝐵𝐴) · 𝑇) = (𝑋𝐴) ↔ 𝑇 = ((𝑋𝐴) / (𝐵𝐴))))
4948biimpd 229 . . . 4 (𝜑 → (((𝐵𝐴) · 𝑇) = (𝑋𝐴) → 𝑇 = ((𝑋𝐴) / (𝐵𝐴))))
5042, 49sylbid 240 . . 3 (𝜑 → ((𝑇 · (𝐵𝐴)) = (𝑋𝐴) → 𝑇 = ((𝑋𝐴) / (𝐵𝐴))))
5140, 50biimtrid 242 . 2 (𝜑 → ((𝑋𝐴) = (𝑇 · (𝐵𝐴)) → 𝑇 = ((𝑋𝐴) / (𝐵𝐴))))
5233, 39, 513syld 60 1 (𝜑 → ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1) → 𝑇 = ((𝑋𝐴) / (𝐵𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  (class class class)co 7448  cc 11182  1c1 11185   + caddc 11187   · cmul 11189  cmin 11520   / cdiv 11947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948
This theorem is referenced by:  bj-bary1  37278
  Copyright terms: Public domain W3C validator