Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-bary1lem1 Structured version   Visualization version   GIF version

Theorem bj-bary1lem1 37299
Description: Lemma for bj-bary1 37300: computation of one of the two barycentric coordinates of a barycenter of two points in one dimension (complex line). (Contributed by BJ, 6-Jun-2019.)
Hypotheses
Ref Expression
bj-bary1.a (𝜑𝐴 ∈ ℂ)
bj-bary1.b (𝜑𝐵 ∈ ℂ)
bj-bary1.x (𝜑𝑋 ∈ ℂ)
bj-bary1.neq (𝜑𝐴𝐵)
bj-bary1.s (𝜑𝑆 ∈ ℂ)
bj-bary1.t (𝜑𝑇 ∈ ℂ)
Assertion
Ref Expression
bj-bary1lem1 (𝜑 → ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1) → 𝑇 = ((𝑋𝐴) / (𝐵𝐴))))

Proof of Theorem bj-bary1lem1
StepHypRef Expression
1 bj-bary1.s . . . . . . 7 (𝜑𝑆 ∈ ℂ)
2 bj-bary1.t . . . . . . 7 (𝜑𝑇 ∈ ℂ)
31, 2pncand 11534 . . . . . 6 (𝜑 → ((𝑆 + 𝑇) − 𝑇) = 𝑆)
4 oveq1 7394 . . . . . 6 ((𝑆 + 𝑇) = 1 → ((𝑆 + 𝑇) − 𝑇) = (1 − 𝑇))
5 pm5.31 830 . . . . . 6 ((((𝑆 + 𝑇) − 𝑇) = 𝑆 ∧ ((𝑆 + 𝑇) = 1 → ((𝑆 + 𝑇) − 𝑇) = (1 − 𝑇))) → ((𝑆 + 𝑇) = 1 → (((𝑆 + 𝑇) − 𝑇) = (1 − 𝑇) ∧ ((𝑆 + 𝑇) − 𝑇) = 𝑆)))
63, 4, 5sylancl 586 . . . . 5 (𝜑 → ((𝑆 + 𝑇) = 1 → (((𝑆 + 𝑇) − 𝑇) = (1 − 𝑇) ∧ ((𝑆 + 𝑇) − 𝑇) = 𝑆)))
7 eqtr2 2750 . . . . . 6 ((((𝑆 + 𝑇) − 𝑇) = (1 − 𝑇) ∧ ((𝑆 + 𝑇) − 𝑇) = 𝑆) → (1 − 𝑇) = 𝑆)
87eqcomd 2735 . . . . 5 ((((𝑆 + 𝑇) − 𝑇) = (1 − 𝑇) ∧ ((𝑆 + 𝑇) − 𝑇) = 𝑆) → 𝑆 = (1 − 𝑇))
96, 8syl6 35 . . . 4 (𝜑 → ((𝑆 + 𝑇) = 1 → 𝑆 = (1 − 𝑇)))
10 oveq1 7394 . . . . . . . 8 (𝑆 = (1 − 𝑇) → (𝑆 · 𝐴) = ((1 − 𝑇) · 𝐴))
1110oveq1d 7402 . . . . . . 7 (𝑆 = (1 − 𝑇) → ((𝑆 · 𝐴) + (𝑇 · 𝐵)) = (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐵)))
12 eqtr 2749 . . . . . . 7 ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ ((𝑆 · 𝐴) + (𝑇 · 𝐵)) = (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐵))) → 𝑋 = (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐵)))
1311, 12sylan2 593 . . . . . 6 ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ 𝑆 = (1 − 𝑇)) → 𝑋 = (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐵)))
14 1cnd 11169 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
15 bj-bary1.a . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
1614, 2, 15subdird 11635 . . . . . . . 8 (𝜑 → ((1 − 𝑇) · 𝐴) = ((1 · 𝐴) − (𝑇 · 𝐴)))
1715mullidd 11192 . . . . . . . . 9 (𝜑 → (1 · 𝐴) = 𝐴)
1817oveq1d 7402 . . . . . . . 8 (𝜑 → ((1 · 𝐴) − (𝑇 · 𝐴)) = (𝐴 − (𝑇 · 𝐴)))
1916, 18eqtrd 2764 . . . . . . 7 (𝜑 → ((1 − 𝑇) · 𝐴) = (𝐴 − (𝑇 · 𝐴)))
2019oveq1d 7402 . . . . . 6 (𝜑 → (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐵)) = ((𝐴 − (𝑇 · 𝐴)) + (𝑇 · 𝐵)))
2113, 20sylan9eqr 2786 . . . . 5 ((𝜑 ∧ (𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ 𝑆 = (1 − 𝑇))) → 𝑋 = ((𝐴 − (𝑇 · 𝐴)) + (𝑇 · 𝐵)))
2221ex 412 . . . 4 (𝜑 → ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ 𝑆 = (1 − 𝑇)) → 𝑋 = ((𝐴 − (𝑇 · 𝐴)) + (𝑇 · 𝐵))))
239, 22sylan2d 605 . . 3 (𝜑 → ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1) → 𝑋 = ((𝐴 − (𝑇 · 𝐴)) + (𝑇 · 𝐵))))
242, 15mulcld 11194 . . . . . 6 (𝜑 → (𝑇 · 𝐴) ∈ ℂ)
25 bj-bary1.b . . . . . . 7 (𝜑𝐵 ∈ ℂ)
262, 25mulcld 11194 . . . . . 6 (𝜑 → (𝑇 · 𝐵) ∈ ℂ)
2715, 24, 26subadd23d 11555 . . . . 5 (𝜑 → ((𝐴 − (𝑇 · 𝐴)) + (𝑇 · 𝐵)) = (𝐴 + ((𝑇 · 𝐵) − (𝑇 · 𝐴))))
282, 25, 15subdid 11634 . . . . . . 7 (𝜑 → (𝑇 · (𝐵𝐴)) = ((𝑇 · 𝐵) − (𝑇 · 𝐴)))
2928eqcomd 2735 . . . . . 6 (𝜑 → ((𝑇 · 𝐵) − (𝑇 · 𝐴)) = (𝑇 · (𝐵𝐴)))
3029oveq2d 7403 . . . . 5 (𝜑 → (𝐴 + ((𝑇 · 𝐵) − (𝑇 · 𝐴))) = (𝐴 + (𝑇 · (𝐵𝐴))))
3127, 30eqtrd 2764 . . . 4 (𝜑 → ((𝐴 − (𝑇 · 𝐴)) + (𝑇 · 𝐵)) = (𝐴 + (𝑇 · (𝐵𝐴))))
3231eqeq2d 2740 . . 3 (𝜑 → (𝑋 = ((𝐴 − (𝑇 · 𝐴)) + (𝑇 · 𝐵)) ↔ 𝑋 = (𝐴 + (𝑇 · (𝐵𝐴)))))
3323, 32sylibd 239 . 2 (𝜑 → ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1) → 𝑋 = (𝐴 + (𝑇 · (𝐵𝐴)))))
34 oveq1 7394 . . 3 (𝑋 = (𝐴 + (𝑇 · (𝐵𝐴))) → (𝑋𝐴) = ((𝐴 + (𝑇 · (𝐵𝐴))) − 𝐴))
3525, 15subcld 11533 . . . . . 6 (𝜑 → (𝐵𝐴) ∈ ℂ)
362, 35mulcld 11194 . . . . 5 (𝜑 → (𝑇 · (𝐵𝐴)) ∈ ℂ)
3715, 36pncan2d 11535 . . . 4 (𝜑 → ((𝐴 + (𝑇 · (𝐵𝐴))) − 𝐴) = (𝑇 · (𝐵𝐴)))
3837eqeq2d 2740 . . 3 (𝜑 → ((𝑋𝐴) = ((𝐴 + (𝑇 · (𝐵𝐴))) − 𝐴) ↔ (𝑋𝐴) = (𝑇 · (𝐵𝐴))))
3934, 38imbitrid 244 . 2 (𝜑 → (𝑋 = (𝐴 + (𝑇 · (𝐵𝐴))) → (𝑋𝐴) = (𝑇 · (𝐵𝐴))))
40 eqcom 2736 . . 3 ((𝑋𝐴) = (𝑇 · (𝐵𝐴)) ↔ (𝑇 · (𝐵𝐴)) = (𝑋𝐴))
412, 35mulcomd 11195 . . . . 5 (𝜑 → (𝑇 · (𝐵𝐴)) = ((𝐵𝐴) · 𝑇))
4241eqeq1d 2731 . . . 4 (𝜑 → ((𝑇 · (𝐵𝐴)) = (𝑋𝐴) ↔ ((𝐵𝐴) · 𝑇) = (𝑋𝐴)))
43 bj-bary1.x . . . . . . 7 (𝜑𝑋 ∈ ℂ)
4443, 15subcld 11533 . . . . . 6 (𝜑 → (𝑋𝐴) ∈ ℂ)
45 bj-bary1.neq . . . . . . . 8 (𝜑𝐴𝐵)
4645necomd 2980 . . . . . . 7 (𝜑𝐵𝐴)
4725, 15, 46subne0d 11542 . . . . . 6 (𝜑 → (𝐵𝐴) ≠ 0)
4835, 2, 44, 47rdiv 12017 . . . . 5 (𝜑 → (((𝐵𝐴) · 𝑇) = (𝑋𝐴) ↔ 𝑇 = ((𝑋𝐴) / (𝐵𝐴))))
4948biimpd 229 . . . 4 (𝜑 → (((𝐵𝐴) · 𝑇) = (𝑋𝐴) → 𝑇 = ((𝑋𝐴) / (𝐵𝐴))))
5042, 49sylbid 240 . . 3 (𝜑 → ((𝑇 · (𝐵𝐴)) = (𝑋𝐴) → 𝑇 = ((𝑋𝐴) / (𝐵𝐴))))
5140, 50biimtrid 242 . 2 (𝜑 → ((𝑋𝐴) = (𝑇 · (𝐵𝐴)) → 𝑇 = ((𝑋𝐴) / (𝐵𝐴))))
5233, 39, 513syld 60 1 (𝜑 → ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1) → 𝑇 = ((𝑋𝐴) / (𝐵𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  (class class class)co 7387  cc 11066  1c1 11069   + caddc 11071   · cmul 11073  cmin 11405   / cdiv 11835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836
This theorem is referenced by:  bj-bary1  37300
  Copyright terms: Public domain W3C validator