Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-bary1lem1 Structured version   Visualization version   GIF version

Theorem bj-bary1lem1 37355
Description: Lemma for bj-bary1 37356: computation of one of the two barycentric coordinates of a barycenter of two points in one dimension (complex line). (Contributed by BJ, 6-Jun-2019.)
Hypotheses
Ref Expression
bj-bary1.a (𝜑𝐴 ∈ ℂ)
bj-bary1.b (𝜑𝐵 ∈ ℂ)
bj-bary1.x (𝜑𝑋 ∈ ℂ)
bj-bary1.neq (𝜑𝐴𝐵)
bj-bary1.s (𝜑𝑆 ∈ ℂ)
bj-bary1.t (𝜑𝑇 ∈ ℂ)
Assertion
Ref Expression
bj-bary1lem1 (𝜑 → ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1) → 𝑇 = ((𝑋𝐴) / (𝐵𝐴))))

Proof of Theorem bj-bary1lem1
StepHypRef Expression
1 bj-bary1.s . . . . . . 7 (𝜑𝑆 ∈ ℂ)
2 bj-bary1.t . . . . . . 7 (𝜑𝑇 ∈ ℂ)
31, 2pncand 11473 . . . . . 6 (𝜑 → ((𝑆 + 𝑇) − 𝑇) = 𝑆)
4 oveq1 7353 . . . . . 6 ((𝑆 + 𝑇) = 1 → ((𝑆 + 𝑇) − 𝑇) = (1 − 𝑇))
5 pm5.31 830 . . . . . 6 ((((𝑆 + 𝑇) − 𝑇) = 𝑆 ∧ ((𝑆 + 𝑇) = 1 → ((𝑆 + 𝑇) − 𝑇) = (1 − 𝑇))) → ((𝑆 + 𝑇) = 1 → (((𝑆 + 𝑇) − 𝑇) = (1 − 𝑇) ∧ ((𝑆 + 𝑇) − 𝑇) = 𝑆)))
63, 4, 5sylancl 586 . . . . 5 (𝜑 → ((𝑆 + 𝑇) = 1 → (((𝑆 + 𝑇) − 𝑇) = (1 − 𝑇) ∧ ((𝑆 + 𝑇) − 𝑇) = 𝑆)))
7 eqtr2 2752 . . . . . 6 ((((𝑆 + 𝑇) − 𝑇) = (1 − 𝑇) ∧ ((𝑆 + 𝑇) − 𝑇) = 𝑆) → (1 − 𝑇) = 𝑆)
87eqcomd 2737 . . . . 5 ((((𝑆 + 𝑇) − 𝑇) = (1 − 𝑇) ∧ ((𝑆 + 𝑇) − 𝑇) = 𝑆) → 𝑆 = (1 − 𝑇))
96, 8syl6 35 . . . 4 (𝜑 → ((𝑆 + 𝑇) = 1 → 𝑆 = (1 − 𝑇)))
10 oveq1 7353 . . . . . . . 8 (𝑆 = (1 − 𝑇) → (𝑆 · 𝐴) = ((1 − 𝑇) · 𝐴))
1110oveq1d 7361 . . . . . . 7 (𝑆 = (1 − 𝑇) → ((𝑆 · 𝐴) + (𝑇 · 𝐵)) = (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐵)))
12 eqtr 2751 . . . . . . 7 ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ ((𝑆 · 𝐴) + (𝑇 · 𝐵)) = (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐵))) → 𝑋 = (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐵)))
1311, 12sylan2 593 . . . . . 6 ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ 𝑆 = (1 − 𝑇)) → 𝑋 = (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐵)))
14 1cnd 11107 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
15 bj-bary1.a . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
1614, 2, 15subdird 11574 . . . . . . . 8 (𝜑 → ((1 − 𝑇) · 𝐴) = ((1 · 𝐴) − (𝑇 · 𝐴)))
1715mullidd 11130 . . . . . . . . 9 (𝜑 → (1 · 𝐴) = 𝐴)
1817oveq1d 7361 . . . . . . . 8 (𝜑 → ((1 · 𝐴) − (𝑇 · 𝐴)) = (𝐴 − (𝑇 · 𝐴)))
1916, 18eqtrd 2766 . . . . . . 7 (𝜑 → ((1 − 𝑇) · 𝐴) = (𝐴 − (𝑇 · 𝐴)))
2019oveq1d 7361 . . . . . 6 (𝜑 → (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐵)) = ((𝐴 − (𝑇 · 𝐴)) + (𝑇 · 𝐵)))
2113, 20sylan9eqr 2788 . . . . 5 ((𝜑 ∧ (𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ 𝑆 = (1 − 𝑇))) → 𝑋 = ((𝐴 − (𝑇 · 𝐴)) + (𝑇 · 𝐵)))
2221ex 412 . . . 4 (𝜑 → ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ 𝑆 = (1 − 𝑇)) → 𝑋 = ((𝐴 − (𝑇 · 𝐴)) + (𝑇 · 𝐵))))
239, 22sylan2d 605 . . 3 (𝜑 → ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1) → 𝑋 = ((𝐴 − (𝑇 · 𝐴)) + (𝑇 · 𝐵))))
242, 15mulcld 11132 . . . . . 6 (𝜑 → (𝑇 · 𝐴) ∈ ℂ)
25 bj-bary1.b . . . . . . 7 (𝜑𝐵 ∈ ℂ)
262, 25mulcld 11132 . . . . . 6 (𝜑 → (𝑇 · 𝐵) ∈ ℂ)
2715, 24, 26subadd23d 11494 . . . . 5 (𝜑 → ((𝐴 − (𝑇 · 𝐴)) + (𝑇 · 𝐵)) = (𝐴 + ((𝑇 · 𝐵) − (𝑇 · 𝐴))))
282, 25, 15subdid 11573 . . . . . . 7 (𝜑 → (𝑇 · (𝐵𝐴)) = ((𝑇 · 𝐵) − (𝑇 · 𝐴)))
2928eqcomd 2737 . . . . . 6 (𝜑 → ((𝑇 · 𝐵) − (𝑇 · 𝐴)) = (𝑇 · (𝐵𝐴)))
3029oveq2d 7362 . . . . 5 (𝜑 → (𝐴 + ((𝑇 · 𝐵) − (𝑇 · 𝐴))) = (𝐴 + (𝑇 · (𝐵𝐴))))
3127, 30eqtrd 2766 . . . 4 (𝜑 → ((𝐴 − (𝑇 · 𝐴)) + (𝑇 · 𝐵)) = (𝐴 + (𝑇 · (𝐵𝐴))))
3231eqeq2d 2742 . . 3 (𝜑 → (𝑋 = ((𝐴 − (𝑇 · 𝐴)) + (𝑇 · 𝐵)) ↔ 𝑋 = (𝐴 + (𝑇 · (𝐵𝐴)))))
3323, 32sylibd 239 . 2 (𝜑 → ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1) → 𝑋 = (𝐴 + (𝑇 · (𝐵𝐴)))))
34 oveq1 7353 . . 3 (𝑋 = (𝐴 + (𝑇 · (𝐵𝐴))) → (𝑋𝐴) = ((𝐴 + (𝑇 · (𝐵𝐴))) − 𝐴))
3525, 15subcld 11472 . . . . . 6 (𝜑 → (𝐵𝐴) ∈ ℂ)
362, 35mulcld 11132 . . . . 5 (𝜑 → (𝑇 · (𝐵𝐴)) ∈ ℂ)
3715, 36pncan2d 11474 . . . 4 (𝜑 → ((𝐴 + (𝑇 · (𝐵𝐴))) − 𝐴) = (𝑇 · (𝐵𝐴)))
3837eqeq2d 2742 . . 3 (𝜑 → ((𝑋𝐴) = ((𝐴 + (𝑇 · (𝐵𝐴))) − 𝐴) ↔ (𝑋𝐴) = (𝑇 · (𝐵𝐴))))
3934, 38imbitrid 244 . 2 (𝜑 → (𝑋 = (𝐴 + (𝑇 · (𝐵𝐴))) → (𝑋𝐴) = (𝑇 · (𝐵𝐴))))
40 eqcom 2738 . . 3 ((𝑋𝐴) = (𝑇 · (𝐵𝐴)) ↔ (𝑇 · (𝐵𝐴)) = (𝑋𝐴))
412, 35mulcomd 11133 . . . . 5 (𝜑 → (𝑇 · (𝐵𝐴)) = ((𝐵𝐴) · 𝑇))
4241eqeq1d 2733 . . . 4 (𝜑 → ((𝑇 · (𝐵𝐴)) = (𝑋𝐴) ↔ ((𝐵𝐴) · 𝑇) = (𝑋𝐴)))
43 bj-bary1.x . . . . . . 7 (𝜑𝑋 ∈ ℂ)
4443, 15subcld 11472 . . . . . 6 (𝜑 → (𝑋𝐴) ∈ ℂ)
45 bj-bary1.neq . . . . . . . 8 (𝜑𝐴𝐵)
4645necomd 2983 . . . . . . 7 (𝜑𝐵𝐴)
4725, 15, 46subne0d 11481 . . . . . 6 (𝜑 → (𝐵𝐴) ≠ 0)
4835, 2, 44, 47rdiv 11956 . . . . 5 (𝜑 → (((𝐵𝐴) · 𝑇) = (𝑋𝐴) ↔ 𝑇 = ((𝑋𝐴) / (𝐵𝐴))))
4948biimpd 229 . . . 4 (𝜑 → (((𝐵𝐴) · 𝑇) = (𝑋𝐴) → 𝑇 = ((𝑋𝐴) / (𝐵𝐴))))
5042, 49sylbid 240 . . 3 (𝜑 → ((𝑇 · (𝐵𝐴)) = (𝑋𝐴) → 𝑇 = ((𝑋𝐴) / (𝐵𝐴))))
5140, 50biimtrid 242 . 2 (𝜑 → ((𝑋𝐴) = (𝑇 · (𝐵𝐴)) → 𝑇 = ((𝑋𝐴) / (𝐵𝐴))))
5233, 39, 513syld 60 1 (𝜑 → ((𝑋 = ((𝑆 · 𝐴) + (𝑇 · 𝐵)) ∧ (𝑆 + 𝑇) = 1) → 𝑇 = ((𝑋𝐴) / (𝐵𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  (class class class)co 7346  cc 11004  1c1 11007   + caddc 11009   · cmul 11011  cmin 11344   / cdiv 11774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775
This theorem is referenced by:  bj-bary1  37356
  Copyright terms: Public domain W3C validator