MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jctird Structured version   Visualization version   GIF version

Theorem jctird 526
Description: Deduction conjoining a theorem to right of consequent in an implication. (Contributed by NM, 21-Apr-2005.)
Hypotheses
Ref Expression
jctird.1 (𝜑 → (𝜓𝜒))
jctird.2 (𝜑𝜃)
Assertion
Ref Expression
jctird (𝜑 → (𝜓 → (𝜒𝜃)))

Proof of Theorem jctird
StepHypRef Expression
1 jctird.1 . 2 (𝜑 → (𝜓𝜒))
2 jctird.2 . . 3 (𝜑𝜃)
32a1d 25 . 2 (𝜑 → (𝜓𝜃))
41, 3jcad 512 1 (𝜑 → (𝜓 → (𝜒𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  anc2ri  556  pm5.31  830  fnun  6632  fcof  6711  brinxper  8700  mapdom2  9112  fisupg  9235  fiint  9277  fiintOLD  9278  dffi3  9382  fiinfg  9452  dfac2b  10084  nnadju  10151  cflm  10203  cfslbn  10220  cardmin  10517  fpwwe2lem11  10594  fpwwe2lem12  10595  elfznelfzob  13734  modsumfzodifsn  13909  dvdsdivcl  16286  isprm5  16677  latjlej1  18412  latmlem1  18428  cnrest2  23173  cnpresti  23175  trufil  23797  stdbdxmet  24403  lgsdir  27243  elwwlks2  29896  orthin  31375  mdbr2  32225  dmdbr2  32232  mdsl2i  32251  atcvat4i  32326  mdsymlem3  32334  wzel  35812  ontgval  36419  poimirlem3  37617  poimirlem4  37618  poimirlem29  37643  poimir  37647  cmtbr4N  39248  cvrat4  39437  cdlemblem  39787  negexpidd  42670  3cubeslem1  42672  tfsconcatb0  43333  ensucne0OLD  43519  itschlc0xyqsol  48756  elpglem2  49701
  Copyright terms: Public domain W3C validator