| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jctird | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining a theorem to right of consequent in an implication. (Contributed by NM, 21-Apr-2005.) |
| Ref | Expression |
|---|---|
| jctird.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| jctird.2 | ⊢ (𝜑 → 𝜃) |
| Ref | Expression |
|---|---|
| jctird | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jctird.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | jctird.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 3 | 2 | a1d 25 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 4 | 1, 3 | jcad 512 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anc2ri 556 pm5.31 830 fnun 6652 fcof 6729 brinxper 8748 mapdom2 9162 fisupg 9296 fiint 9338 fiintOLD 9339 dffi3 9443 fiinfg 9513 dfac2b 10145 nnadju 10212 cflm 10264 cfslbn 10281 cardmin 10578 fpwwe2lem11 10655 fpwwe2lem12 10656 elfznelfzob 13789 modsumfzodifsn 13962 dvdsdivcl 16335 isprm5 16726 latjlej1 18463 latmlem1 18479 cnrest2 23224 cnpresti 23226 trufil 23848 stdbdxmet 24454 lgsdir 27295 elwwlks2 29948 orthin 31427 mdbr2 32277 dmdbr2 32284 mdsl2i 32303 atcvat4i 32378 mdsymlem3 32386 wzel 35842 ontgval 36449 poimirlem3 37647 poimirlem4 37648 poimirlem29 37673 poimir 37677 cmtbr4N 39273 cvrat4 39462 cdlemblem 39812 negexpidd 42705 3cubeslem1 42707 tfsconcatb0 43368 ensucne0OLD 43554 itschlc0xyqsol 48747 elpglem2 49576 |
| Copyright terms: Public domain | W3C validator |