![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > jctird | Structured version Visualization version GIF version |
Description: Deduction conjoining a theorem to right of consequent in an implication. (Contributed by NM, 21-Apr-2005.) |
Ref | Expression |
---|---|
jctird.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
jctird.2 | ⊢ (𝜑 → 𝜃) |
Ref | Expression |
---|---|
jctird | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jctird.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | jctird.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
3 | 2 | a1d 25 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
4 | 1, 3 | jcad 513 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: anc2ri 557 pm5.31 829 fnun 6660 fcof 6737 fcoOLD 6739 mapdom2 9144 fisupg 9287 fiint 9320 dffi3 9422 fiinfg 9490 dfac2b 10121 nnadju 10188 cflm 10241 cfslbn 10258 cardmin 10555 fpwwe2lem11 10632 fpwwe2lem12 10633 elfznelfzob 13734 modsumfzodifsn 13905 dvdsdivcl 16255 isprm5 16640 latjlej1 18402 latmlem1 18418 cnrest2 22781 cnpresti 22783 trufil 23405 stdbdxmet 24015 lgsdir 26824 elwwlks2 29209 orthin 30686 mdbr2 31536 dmdbr2 31543 mdsl2i 31562 atcvat4i 31637 mdsymlem3 31645 wzel 34784 ontgval 35304 poimirlem3 36479 poimirlem4 36480 poimirlem29 36505 poimir 36509 cmtbr4N 38113 cvrat4 38302 cdlemblem 38652 negexpidd 41405 3cubeslem1 41407 tfsconcatb0 42079 ensucne0OLD 42266 itschlc0xyqsol 47406 elpglem2 47710 |
Copyright terms: Public domain | W3C validator |