| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jctird | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining a theorem to right of consequent in an implication. (Contributed by NM, 21-Apr-2005.) |
| Ref | Expression |
|---|---|
| jctird.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| jctird.2 | ⊢ (𝜑 → 𝜃) |
| Ref | Expression |
|---|---|
| jctird | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jctird.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | jctird.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 3 | 2 | a1d 25 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 4 | 1, 3 | jcad 512 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anc2ri 556 pm5.31 830 fnun 6614 fcof 6693 brinxper 8677 mapdom2 9089 fisupg 9211 fiint 9253 fiintOLD 9254 dffi3 9358 fiinfg 9428 dfac2b 10060 nnadju 10127 cflm 10179 cfslbn 10196 cardmin 10493 fpwwe2lem11 10570 fpwwe2lem12 10571 elfznelfzob 13710 modsumfzodifsn 13885 dvdsdivcl 16262 isprm5 16653 latjlej1 18394 latmlem1 18410 cnrest2 23206 cnpresti 23208 trufil 23830 stdbdxmet 24436 lgsdir 27276 elwwlks2 29946 orthin 31425 mdbr2 32275 dmdbr2 32282 mdsl2i 32301 atcvat4i 32376 mdsymlem3 32384 wzel 35805 ontgval 36412 poimirlem3 37610 poimirlem4 37611 poimirlem29 37636 poimir 37640 cmtbr4N 39241 cvrat4 39430 cdlemblem 39780 negexpidd 42663 3cubeslem1 42665 tfsconcatb0 43326 ensucne0OLD 43512 itschlc0xyqsol 48749 elpglem2 49694 |
| Copyright terms: Public domain | W3C validator |