| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jctird | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining a theorem to right of consequent in an implication. (Contributed by NM, 21-Apr-2005.) |
| Ref | Expression |
|---|---|
| jctird.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| jctird.2 | ⊢ (𝜑 → 𝜃) |
| Ref | Expression |
|---|---|
| jctird | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jctird.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | jctird.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 3 | 2 | a1d 25 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 4 | 1, 3 | jcad 512 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anc2ri 556 pm5.31 830 fnun 6596 fcof 6675 brinxper 8654 mapdom2 9065 fisupg 9177 fiint 9216 fiintOLD 9217 dffi3 9321 fiinfg 9391 dfac2b 10025 nnadju 10092 cflm 10144 cfslbn 10161 cardmin 10458 fpwwe2lem11 10535 fpwwe2lem12 10536 elfznelfzob 13676 modsumfzodifsn 13851 dvdsdivcl 16227 isprm5 16618 latjlej1 18359 latmlem1 18375 cnrest2 23171 cnpresti 23173 trufil 23795 stdbdxmet 24401 lgsdir 27241 elwwlks2 29911 orthin 31390 mdbr2 32240 dmdbr2 32247 mdsl2i 32266 atcvat4i 32341 mdsymlem3 32349 tz9.1regs 35067 wzel 35802 ontgval 36409 poimirlem3 37607 poimirlem4 37608 poimirlem29 37633 poimir 37637 cmtbr4N 39238 cvrat4 39426 cdlemblem 39776 negexpidd 42659 3cubeslem1 42661 tfsconcatb0 43321 ensucne0OLD 43507 itschlc0xyqsol 48756 elpglem2 49701 |
| Copyright terms: Public domain | W3C validator |