| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jctird | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining a theorem to right of consequent in an implication. (Contributed by NM, 21-Apr-2005.) |
| Ref | Expression |
|---|---|
| jctird.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| jctird.2 | ⊢ (𝜑 → 𝜃) |
| Ref | Expression |
|---|---|
| jctird | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jctird.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | jctird.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 3 | 2 | a1d 25 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 4 | 1, 3 | jcad 512 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anc2ri 556 pm5.31 830 fnun 6632 fcof 6711 brinxper 8700 mapdom2 9112 fisupg 9235 fiint 9277 fiintOLD 9278 dffi3 9382 fiinfg 9452 dfac2b 10084 nnadju 10151 cflm 10203 cfslbn 10220 cardmin 10517 fpwwe2lem11 10594 fpwwe2lem12 10595 elfznelfzob 13734 modsumfzodifsn 13909 dvdsdivcl 16286 isprm5 16677 latjlej1 18412 latmlem1 18428 cnrest2 23173 cnpresti 23175 trufil 23797 stdbdxmet 24403 lgsdir 27243 elwwlks2 29896 orthin 31375 mdbr2 32225 dmdbr2 32232 mdsl2i 32251 atcvat4i 32326 mdsymlem3 32334 wzel 35812 ontgval 36419 poimirlem3 37617 poimirlem4 37618 poimirlem29 37643 poimir 37647 cmtbr4N 39248 cvrat4 39437 cdlemblem 39787 negexpidd 42670 3cubeslem1 42672 tfsconcatb0 43333 ensucne0OLD 43519 itschlc0xyqsol 48756 elpglem2 49701 |
| Copyright terms: Public domain | W3C validator |