| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jctird | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining a theorem to right of consequent in an implication. (Contributed by NM, 21-Apr-2005.) |
| Ref | Expression |
|---|---|
| jctird.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| jctird.2 | ⊢ (𝜑 → 𝜃) |
| Ref | Expression |
|---|---|
| jctird | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jctird.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | jctird.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 3 | 2 | a1d 25 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 4 | 1, 3 | jcad 512 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anc2ri 556 pm5.31 830 fnun 6595 fcof 6674 brinxper 8651 mapdom2 9061 fisupg 9172 fiint 9211 dffi3 9315 fiinfg 9385 dfac2b 10022 nnadju 10089 cflm 10141 cfslbn 10158 cardmin 10455 fpwwe2lem11 10532 fpwwe2lem12 10533 elfznelfzob 13674 modsumfzodifsn 13851 dvdsdivcl 16227 isprm5 16618 latjlej1 18359 latmlem1 18375 chnccat 18532 cnrest2 23201 cnpresti 23203 trufil 23825 stdbdxmet 24430 lgsdir 27270 elwwlks2 29947 orthin 31426 mdbr2 32276 dmdbr2 32283 mdsl2i 32302 atcvat4i 32377 mdsymlem3 32385 tz9.1regs 35130 wzel 35866 ontgval 36475 poimirlem3 37673 poimirlem4 37674 poimirlem29 37699 poimir 37703 cmtbr4N 39364 cvrat4 39552 cdlemblem 39902 negexpidd 42785 3cubeslem1 42787 tfsconcatb0 43447 ensucne0OLD 43633 itschlc0xyqsol 48878 elpglem2 49823 |
| Copyright terms: Public domain | W3C validator |