![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > jctird | Structured version Visualization version GIF version |
Description: Deduction conjoining a theorem to right of consequent in an implication. (Contributed by NM, 21-Apr-2005.) |
Ref | Expression |
---|---|
jctird.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
jctird.2 | ⊢ (𝜑 → 𝜃) |
Ref | Expression |
---|---|
jctird | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jctird.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | jctird.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
3 | 2 | a1d 25 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
4 | 1, 3 | jcad 512 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: anc2ri 556 pm5.31 830 fnun 6693 fcof 6770 fcoOLD 6772 brinxper 8792 mapdom2 9214 fisupg 9352 fiint 9394 fiintOLD 9395 dffi3 9500 fiinfg 9568 dfac2b 10200 nnadju 10267 cflm 10319 cfslbn 10336 cardmin 10633 fpwwe2lem11 10710 fpwwe2lem12 10711 elfznelfzob 13823 modsumfzodifsn 13995 dvdsdivcl 16364 isprm5 16754 latjlej1 18523 latmlem1 18539 cnrest2 23315 cnpresti 23317 trufil 23939 stdbdxmet 24549 lgsdir 27394 elwwlks2 29999 orthin 31478 mdbr2 32328 dmdbr2 32335 mdsl2i 32354 atcvat4i 32429 mdsymlem3 32437 wzel 35788 ontgval 36397 poimirlem3 37583 poimirlem4 37584 poimirlem29 37609 poimir 37613 cmtbr4N 39211 cvrat4 39400 cdlemblem 39750 negexpidd 42638 3cubeslem1 42640 tfsconcatb0 43306 ensucne0OLD 43492 itschlc0xyqsol 48501 elpglem2 48804 |
Copyright terms: Public domain | W3C validator |