![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > jctird | Structured version Visualization version GIF version |
Description: Deduction conjoining a theorem to right of consequent in an implication. (Contributed by NM, 21-Apr-2005.) |
Ref | Expression |
---|---|
jctird.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
jctird.2 | ⊢ (𝜑 → 𝜃) |
Ref | Expression |
---|---|
jctird | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jctird.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | jctird.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
3 | 2 | a1d 25 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
4 | 1, 3 | jcad 512 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: anc2ri 556 pm5.31 831 fnun 6682 fcof 6759 brinxper 8772 mapdom2 9186 fisupg 9321 fiint 9363 fiintOLD 9364 dffi3 9468 fiinfg 9536 dfac2b 10168 nnadju 10235 cflm 10287 cfslbn 10304 cardmin 10601 fpwwe2lem11 10678 fpwwe2lem12 10679 elfznelfzob 13808 modsumfzodifsn 13981 dvdsdivcl 16349 isprm5 16740 latjlej1 18510 latmlem1 18526 cnrest2 23309 cnpresti 23311 trufil 23933 stdbdxmet 24543 lgsdir 27390 elwwlks2 29995 orthin 31474 mdbr2 32324 dmdbr2 32331 mdsl2i 32350 atcvat4i 32425 mdsymlem3 32433 wzel 35805 ontgval 36413 poimirlem3 37609 poimirlem4 37610 poimirlem29 37635 poimir 37639 cmtbr4N 39236 cvrat4 39425 cdlemblem 39775 negexpidd 42669 3cubeslem1 42671 tfsconcatb0 43333 ensucne0OLD 43519 itschlc0xyqsol 48616 elpglem2 48942 |
Copyright terms: Public domain | W3C validator |