| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jctird | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining a theorem to right of consequent in an implication. (Contributed by NM, 21-Apr-2005.) |
| Ref | Expression |
|---|---|
| jctird.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| jctird.2 | ⊢ (𝜑 → 𝜃) |
| Ref | Expression |
|---|---|
| jctird | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jctird.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | jctird.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 3 | 2 | a1d 25 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 4 | 1, 3 | jcad 512 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anc2ri 556 pm5.31 830 fnun 6635 fcof 6714 brinxper 8703 mapdom2 9118 fisupg 9242 fiint 9284 fiintOLD 9285 dffi3 9389 fiinfg 9459 dfac2b 10091 nnadju 10158 cflm 10210 cfslbn 10227 cardmin 10524 fpwwe2lem11 10601 fpwwe2lem12 10602 elfznelfzob 13741 modsumfzodifsn 13916 dvdsdivcl 16293 isprm5 16684 latjlej1 18419 latmlem1 18435 cnrest2 23180 cnpresti 23182 trufil 23804 stdbdxmet 24410 lgsdir 27250 elwwlks2 29903 orthin 31382 mdbr2 32232 dmdbr2 32239 mdsl2i 32258 atcvat4i 32333 mdsymlem3 32341 wzel 35819 ontgval 36426 poimirlem3 37624 poimirlem4 37625 poimirlem29 37650 poimir 37654 cmtbr4N 39255 cvrat4 39444 cdlemblem 39794 negexpidd 42677 3cubeslem1 42679 tfsconcatb0 43340 ensucne0OLD 43526 itschlc0xyqsol 48760 elpglem2 49705 |
| Copyright terms: Public domain | W3C validator |