Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > jctird | Structured version Visualization version GIF version |
Description: Deduction conjoining a theorem to right of consequent in an implication. (Contributed by NM, 21-Apr-2005.) |
Ref | Expression |
---|---|
jctird.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
jctird.2 | ⊢ (𝜑 → 𝜃) |
Ref | Expression |
---|---|
jctird | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jctird.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | jctird.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
3 | 2 | a1d 25 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
4 | 1, 3 | jcad 512 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: anc2ri 556 pm5.31 827 fnun 6529 fcof 6607 fcoOLD 6609 mapdom2 8884 fisupg 8992 fiint 9021 dffi3 9120 fiinfg 9188 dfac2b 9817 nnadju 9884 cflm 9937 cfslbn 9954 cardmin 10251 fpwwe2lem11 10328 fpwwe2lem12 10329 elfznelfzob 13421 modsumfzodifsn 13592 dvdsdivcl 15953 isprm5 16340 latjlej1 18086 latmlem1 18102 cnrest2 22345 cnpresti 22347 trufil 22969 stdbdxmet 23577 lgsdir 26385 elwwlks2 28232 orthin 29709 mdbr2 30559 dmdbr2 30566 mdsl2i 30585 atcvat4i 30660 mdsymlem3 30668 wzel 33745 ontgval 34547 poimirlem3 35707 poimirlem4 35708 poimirlem29 35733 poimir 35737 cmtbr4N 37196 cvrat4 37384 cdlemblem 37734 negexpidd 40420 3cubeslem1 40422 ensucne0OLD 41035 itschlc0xyqsol 46001 elpglem2 46303 |
Copyright terms: Public domain | W3C validator |