| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jctird | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining a theorem to right of consequent in an implication. (Contributed by NM, 21-Apr-2005.) |
| Ref | Expression |
|---|---|
| jctird.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| jctird.2 | ⊢ (𝜑 → 𝜃) |
| Ref | Expression |
|---|---|
| jctird | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jctird.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | jctird.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 3 | 2 | a1d 25 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 4 | 1, 3 | jcad 512 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anc2ri 556 pm5.31 830 fnun 6614 fcof 6693 brinxper 8677 mapdom2 9089 fisupg 9211 fiint 9253 fiintOLD 9254 dffi3 9358 fiinfg 9428 dfac2b 10060 nnadju 10127 cflm 10179 cfslbn 10196 cardmin 10493 fpwwe2lem11 10570 fpwwe2lem12 10571 elfznelfzob 13710 modsumfzodifsn 13885 dvdsdivcl 16262 isprm5 16653 latjlej1 18388 latmlem1 18404 cnrest2 23149 cnpresti 23151 trufil 23773 stdbdxmet 24379 lgsdir 27219 elwwlks2 29869 orthin 31348 mdbr2 32198 dmdbr2 32205 mdsl2i 32224 atcvat4i 32299 mdsymlem3 32307 wzel 35785 ontgval 36392 poimirlem3 37590 poimirlem4 37591 poimirlem29 37616 poimir 37620 cmtbr4N 39221 cvrat4 39410 cdlemblem 39760 negexpidd 42643 3cubeslem1 42645 tfsconcatb0 43306 ensucne0OLD 43492 itschlc0xyqsol 48729 elpglem2 49674 |
| Copyright terms: Public domain | W3C validator |