![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > jctird | Structured version Visualization version GIF version |
Description: Deduction conjoining a theorem to right of consequent in an implication. (Contributed by NM, 21-Apr-2005.) |
Ref | Expression |
---|---|
jctird.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
jctird.2 | ⊢ (𝜑 → 𝜃) |
Ref | Expression |
---|---|
jctird | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jctird.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | jctird.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
3 | 2 | a1d 25 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
4 | 1, 3 | jcad 514 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: anc2ri 558 pm5.31 830 fnun 6664 fcof 6741 fcoOLD 6743 mapdom2 9148 fisupg 9291 fiint 9324 dffi3 9426 fiinfg 9494 dfac2b 10125 nnadju 10192 cflm 10245 cfslbn 10262 cardmin 10559 fpwwe2lem11 10636 fpwwe2lem12 10637 elfznelfzob 13738 modsumfzodifsn 13909 dvdsdivcl 16259 isprm5 16644 latjlej1 18406 latmlem1 18422 cnrest2 22790 cnpresti 22792 trufil 23414 stdbdxmet 24024 lgsdir 26835 elwwlks2 29251 orthin 30730 mdbr2 31580 dmdbr2 31587 mdsl2i 31606 atcvat4i 31681 mdsymlem3 31689 wzel 34827 ontgval 35364 poimirlem3 36539 poimirlem4 36540 poimirlem29 36565 poimir 36569 cmtbr4N 38173 cvrat4 38362 cdlemblem 38712 negexpidd 41468 3cubeslem1 41470 tfsconcatb0 42142 ensucne0OLD 42329 itschlc0xyqsol 47501 elpglem2 47805 |
Copyright terms: Public domain | W3C validator |