| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jctird | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining a theorem to right of consequent in an implication. (Contributed by NM, 21-Apr-2005.) |
| Ref | Expression |
|---|---|
| jctird.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| jctird.2 | ⊢ (𝜑 → 𝜃) |
| Ref | Expression |
|---|---|
| jctird | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jctird.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | jctird.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 3 | 2 | a1d 25 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 4 | 1, 3 | jcad 512 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anc2ri 556 pm5.31 830 fnun 6662 fcof 6739 brinxper 8756 mapdom2 9170 fisupg 9306 fiint 9348 fiintOLD 9349 dffi3 9453 fiinfg 9521 dfac2b 10153 nnadju 10220 cflm 10272 cfslbn 10289 cardmin 10586 fpwwe2lem11 10663 fpwwe2lem12 10664 elfznelfzob 13794 modsumfzodifsn 13967 dvdsdivcl 16335 isprm5 16726 latjlej1 18467 latmlem1 18483 cnrest2 23240 cnpresti 23242 trufil 23864 stdbdxmet 24472 lgsdir 27312 elwwlks2 29914 orthin 31393 mdbr2 32243 dmdbr2 32250 mdsl2i 32269 atcvat4i 32344 mdsymlem3 32352 wzel 35784 ontgval 36391 poimirlem3 37589 poimirlem4 37590 poimirlem29 37615 poimir 37619 cmtbr4N 39215 cvrat4 39404 cdlemblem 39754 negexpidd 42656 3cubeslem1 42658 tfsconcatb0 43319 ensucne0OLD 43505 itschlc0xyqsol 48646 elpglem2 49239 |
| Copyright terms: Public domain | W3C validator |