Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > jctird | Structured version Visualization version GIF version |
Description: Deduction conjoining a theorem to right of consequent in an implication. (Contributed by NM, 21-Apr-2005.) |
Ref | Expression |
---|---|
jctird.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
jctird.2 | ⊢ (𝜑 → 𝜃) |
Ref | Expression |
---|---|
jctird | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jctird.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | jctird.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
3 | 2 | a1d 25 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
4 | 1, 3 | jcad 513 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: anc2ri 557 pm5.31 828 fnun 6538 fcof 6616 fcoOLD 6618 mapdom2 8923 fisupg 9050 fiint 9079 dffi3 9178 fiinfg 9246 dfac2b 9874 nnadju 9941 cflm 9994 cfslbn 10011 cardmin 10308 fpwwe2lem11 10385 fpwwe2lem12 10386 elfznelfzob 13481 modsumfzodifsn 13652 dvdsdivcl 16013 isprm5 16400 latjlej1 18159 latmlem1 18175 cnrest2 22425 cnpresti 22427 trufil 23049 stdbdxmet 23659 lgsdir 26468 elwwlks2 28317 orthin 29794 mdbr2 30644 dmdbr2 30651 mdsl2i 30670 atcvat4i 30745 mdsymlem3 30753 wzel 33804 ontgval 34606 poimirlem3 35766 poimirlem4 35767 poimirlem29 35792 poimir 35796 cmtbr4N 37255 cvrat4 37443 cdlemblem 37793 negexpidd 40490 3cubeslem1 40492 ensucne0OLD 41105 itschlc0xyqsol 46069 elpglem2 46373 |
Copyright terms: Public domain | W3C validator |