Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > jctird | Structured version Visualization version GIF version |
Description: Deduction conjoining a theorem to right of consequent in an implication. (Contributed by NM, 21-Apr-2005.) |
Ref | Expression |
---|---|
jctird.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
jctird.2 | ⊢ (𝜑 → 𝜃) |
Ref | Expression |
---|---|
jctird | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jctird.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | jctird.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
3 | 2 | a1d 25 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
4 | 1, 3 | jcad 513 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: anc2ri 557 pm5.31 828 fnun 6545 fcof 6623 fcoOLD 6625 mapdom2 8935 fisupg 9062 fiint 9091 dffi3 9190 fiinfg 9258 dfac2b 9886 nnadju 9953 cflm 10006 cfslbn 10023 cardmin 10320 fpwwe2lem11 10397 fpwwe2lem12 10398 elfznelfzob 13493 modsumfzodifsn 13664 dvdsdivcl 16025 isprm5 16412 latjlej1 18171 latmlem1 18187 cnrest2 22437 cnpresti 22439 trufil 23061 stdbdxmet 23671 lgsdir 26480 elwwlks2 28331 orthin 29808 mdbr2 30658 dmdbr2 30665 mdsl2i 30684 atcvat4i 30759 mdsymlem3 30767 wzel 33818 ontgval 34620 poimirlem3 35780 poimirlem4 35781 poimirlem29 35806 poimir 35810 cmtbr4N 37269 cvrat4 37457 cdlemblem 37807 negexpidd 40504 3cubeslem1 40506 ensucne0OLD 41137 itschlc0xyqsol 46113 elpglem2 46417 |
Copyright terms: Public domain | W3C validator |