Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm5.32 | Structured version Visualization version GIF version |
Description: Distribution of implication over biconditional. Theorem *5.32 of [WhiteheadRussell] p. 125. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
pm5.32 | ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notbi 318 | . . . 4 ⊢ ((𝜓 ↔ 𝜒) ↔ (¬ 𝜓 ↔ ¬ 𝜒)) | |
2 | 1 | imbi2i 335 | . . 3 ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) ↔ (𝜑 → (¬ 𝜓 ↔ ¬ 𝜒))) |
3 | pm5.74 269 | . . 3 ⊢ ((𝜑 → (¬ 𝜓 ↔ ¬ 𝜒)) ↔ ((𝜑 → ¬ 𝜓) ↔ (𝜑 → ¬ 𝜒))) | |
4 | notbi 318 | . . 3 ⊢ (((𝜑 → ¬ 𝜓) ↔ (𝜑 → ¬ 𝜒)) ↔ (¬ (𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 → ¬ 𝜒))) | |
5 | 2, 3, 4 | 3bitri 296 | . 2 ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) ↔ (¬ (𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 → ¬ 𝜒))) |
6 | df-an 396 | . . 3 ⊢ ((𝜑 ∧ 𝜓) ↔ ¬ (𝜑 → ¬ 𝜓)) | |
7 | df-an 396 | . . 3 ⊢ ((𝜑 ∧ 𝜒) ↔ ¬ (𝜑 → ¬ 𝜒)) | |
8 | 6, 7 | bibi12i 339 | . 2 ⊢ (((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒)) ↔ (¬ (𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 → ¬ 𝜒))) |
9 | 5, 8 | bitr4i 277 | 1 ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: pm5.32i 574 pm5.32d 576 biadan 815 biadaniALT 817 xordi 1013 rabbi 3309 cbvrexdva2 3382 rabxfrd 5335 asymref 6010 mpo2eqb 7384 cfilucfil4 24390 bj-rcleqf 35142 wl-ax11-lem8 35670 relexp0eq 41198 2sb5nd 42069 2sb5ndVD 42419 2sb5ndALT 42441 pm5.32dra 46028 |
Copyright terms: Public domain | W3C validator |