|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > pm5.32 | Structured version Visualization version GIF version | ||
| Description: Distribution of implication over biconditional. Theorem *5.32 of [WhiteheadRussell] p. 125. (Contributed by NM, 1-Aug-1994.) | 
| Ref | Expression | 
|---|---|
| pm5.32 | ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | notbi 319 | . . . 4 ⊢ ((𝜓 ↔ 𝜒) ↔ (¬ 𝜓 ↔ ¬ 𝜒)) | |
| 2 | 1 | imbi2i 336 | . . 3 ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) ↔ (𝜑 → (¬ 𝜓 ↔ ¬ 𝜒))) | 
| 3 | pm5.74 270 | . . 3 ⊢ ((𝜑 → (¬ 𝜓 ↔ ¬ 𝜒)) ↔ ((𝜑 → ¬ 𝜓) ↔ (𝜑 → ¬ 𝜒))) | |
| 4 | notbi 319 | . . 3 ⊢ (((𝜑 → ¬ 𝜓) ↔ (𝜑 → ¬ 𝜒)) ↔ (¬ (𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 → ¬ 𝜒))) | |
| 5 | 2, 3, 4 | 3bitri 297 | . 2 ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) ↔ (¬ (𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 → ¬ 𝜒))) | 
| 6 | df-an 396 | . . 3 ⊢ ((𝜑 ∧ 𝜓) ↔ ¬ (𝜑 → ¬ 𝜓)) | |
| 7 | df-an 396 | . . 3 ⊢ ((𝜑 ∧ 𝜒) ↔ ¬ (𝜑 → ¬ 𝜒)) | |
| 8 | 6, 7 | bibi12i 339 | . 2 ⊢ (((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒)) ↔ (¬ (𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 → ¬ 𝜒))) | 
| 9 | 5, 8 | bitr4i 278 | 1 ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 | 
| This theorem is referenced by: pm5.32i 574 pm5.32d 577 biadan 819 biadaniALT 821 xordi 1019 cbvrexdva2OLD 3350 rabbi 3467 rabxfrd 5417 asymref 6136 mpo2eqb 7565 cfilucfil4 25355 bj-rcleqf 37026 wl-ax11-lem8 37593 relexp0eq 43714 2sb5nd 44580 2sb5ndVD 44930 2sb5ndALT 44952 pm5.32dra 48715 | 
| Copyright terms: Public domain | W3C validator |