Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clddisj Structured version   Visualization version   GIF version

Theorem clddisj 48935
Description: Two ways of saying that two closed sets are disjoint, if 𝐽 is a topology and 𝑋 is a closed set. An alternative proof is similar to that of opndisj 48934 with elssuni 4884 replaced by the combination of cldss 22939 and eqid 2731. (Contributed by Zhi Wang, 6-Sep-2024.)
Assertion
Ref Expression
clddisj (𝑍 = ( 𝐽𝑋) → (𝑌 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑍) ↔ (𝑌 ∈ (Clsd‘𝐽) ∧ (𝑋𝑌) = ∅)))

Proof of Theorem clddisj
StepHypRef Expression
1 elin 3913 . 2 (𝑌 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑍) ↔ (𝑌 ∈ (Clsd‘𝐽) ∧ 𝑌 ∈ 𝒫 𝑍))
2 simpl 482 . . . . 5 ((𝑍 = ( 𝐽𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝑍 = ( 𝐽𝑋))
3 cldrcl 22936 . . . . . . 7 (𝑌 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
4 clduni 48932 . . . . . . . 8 (𝐽 ∈ Top → (Clsd‘𝐽) = 𝐽)
54difeq1d 4070 . . . . . . 7 (𝐽 ∈ Top → ( (Clsd‘𝐽) ∖ 𝑋) = ( 𝐽𝑋))
63, 5syl 17 . . . . . 6 (𝑌 ∈ (Clsd‘𝐽) → ( (Clsd‘𝐽) ∖ 𝑋) = ( 𝐽𝑋))
76adantl 481 . . . . 5 ((𝑍 = ( 𝐽𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → ( (Clsd‘𝐽) ∖ 𝑋) = ( 𝐽𝑋))
82, 7eqtr4d 2769 . . . 4 ((𝑍 = ( 𝐽𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝑍 = ( (Clsd‘𝐽) ∖ 𝑋))
9 opndisj 48934 . . . . . 6 (𝑍 = ( (Clsd‘𝐽) ∖ 𝑋) → (𝑌 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑍) ↔ (𝑌 ∈ (Clsd‘𝐽) ∧ (𝑋𝑌) = ∅)))
101, 9bitr3id 285 . . . . 5 (𝑍 = ( (Clsd‘𝐽) ∖ 𝑋) → ((𝑌 ∈ (Clsd‘𝐽) ∧ 𝑌 ∈ 𝒫 𝑍) ↔ (𝑌 ∈ (Clsd‘𝐽) ∧ (𝑋𝑌) = ∅)))
1110pm5.32dra 48826 . . . 4 ((𝑍 = ( (Clsd‘𝐽) ∖ 𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝑌 ∈ 𝒫 𝑍 ↔ (𝑋𝑌) = ∅))
128, 11sylancom 588 . . 3 ((𝑍 = ( 𝐽𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝑌 ∈ 𝒫 𝑍 ↔ (𝑋𝑌) = ∅))
1312pm5.32da 579 . 2 (𝑍 = ( 𝐽𝑋) → ((𝑌 ∈ (Clsd‘𝐽) ∧ 𝑌 ∈ 𝒫 𝑍) ↔ (𝑌 ∈ (Clsd‘𝐽) ∧ (𝑋𝑌) = ∅)))
141, 13bitrid 283 1 (𝑍 = ( 𝐽𝑋) → (𝑌 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑍) ↔ (𝑌 ∈ (Clsd‘𝐽) ∧ (𝑋𝑌) = ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  cdif 3894  cin 3896  c0 4278  𝒫 cpw 4545   cuni 4854  cfv 6476  Topctop 22803  Clsdccld 22926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-iota 6432  df-fun 6478  df-fn 6479  df-fv 6484  df-mre 17483  df-top 22804  df-topon 22821  df-cld 22929
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator