![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > clddisj | Structured version Visualization version GIF version |
Description: Two ways of saying that two closed sets are disjoint, if 𝐽 is a topology and 𝑋 is a closed set. An alternative proof is similar to that of opndisj 47915 with elssuni 4935 replaced by the combination of cldss 22926 and eqid 2728. (Contributed by Zhi Wang, 6-Sep-2024.) |
Ref | Expression |
---|---|
clddisj | ⊢ (𝑍 = (∪ 𝐽 ∖ 𝑋) → (𝑌 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑍) ↔ (𝑌 ∈ (Clsd‘𝐽) ∧ (𝑋 ∩ 𝑌) = ∅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3961 | . 2 ⊢ (𝑌 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑍) ↔ (𝑌 ∈ (Clsd‘𝐽) ∧ 𝑌 ∈ 𝒫 𝑍)) | |
2 | simpl 482 | . . . . 5 ⊢ ((𝑍 = (∪ 𝐽 ∖ 𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝑍 = (∪ 𝐽 ∖ 𝑋)) | |
3 | cldrcl 22923 | . . . . . . 7 ⊢ (𝑌 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) | |
4 | clduni 47913 | . . . . . . . 8 ⊢ (𝐽 ∈ Top → ∪ (Clsd‘𝐽) = ∪ 𝐽) | |
5 | 4 | difeq1d 4117 | . . . . . . 7 ⊢ (𝐽 ∈ Top → (∪ (Clsd‘𝐽) ∖ 𝑋) = (∪ 𝐽 ∖ 𝑋)) |
6 | 3, 5 | syl 17 | . . . . . 6 ⊢ (𝑌 ∈ (Clsd‘𝐽) → (∪ (Clsd‘𝐽) ∖ 𝑋) = (∪ 𝐽 ∖ 𝑋)) |
7 | 6 | adantl 481 | . . . . 5 ⊢ ((𝑍 = (∪ 𝐽 ∖ 𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (∪ (Clsd‘𝐽) ∖ 𝑋) = (∪ 𝐽 ∖ 𝑋)) |
8 | 2, 7 | eqtr4d 2771 | . . . 4 ⊢ ((𝑍 = (∪ 𝐽 ∖ 𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝑍 = (∪ (Clsd‘𝐽) ∖ 𝑋)) |
9 | opndisj 47915 | . . . . . 6 ⊢ (𝑍 = (∪ (Clsd‘𝐽) ∖ 𝑋) → (𝑌 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑍) ↔ (𝑌 ∈ (Clsd‘𝐽) ∧ (𝑋 ∩ 𝑌) = ∅))) | |
10 | 1, 9 | bitr3id 285 | . . . . 5 ⊢ (𝑍 = (∪ (Clsd‘𝐽) ∖ 𝑋) → ((𝑌 ∈ (Clsd‘𝐽) ∧ 𝑌 ∈ 𝒫 𝑍) ↔ (𝑌 ∈ (Clsd‘𝐽) ∧ (𝑋 ∩ 𝑌) = ∅))) |
11 | 10 | pm5.32dra 47861 | . . . 4 ⊢ ((𝑍 = (∪ (Clsd‘𝐽) ∖ 𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝑌 ∈ 𝒫 𝑍 ↔ (𝑋 ∩ 𝑌) = ∅)) |
12 | 8, 11 | sylancom 587 | . . 3 ⊢ ((𝑍 = (∪ 𝐽 ∖ 𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝑌 ∈ 𝒫 𝑍 ↔ (𝑋 ∩ 𝑌) = ∅)) |
13 | 12 | pm5.32da 578 | . 2 ⊢ (𝑍 = (∪ 𝐽 ∖ 𝑋) → ((𝑌 ∈ (Clsd‘𝐽) ∧ 𝑌 ∈ 𝒫 𝑍) ↔ (𝑌 ∈ (Clsd‘𝐽) ∧ (𝑋 ∩ 𝑌) = ∅))) |
14 | 1, 13 | bitrid 283 | 1 ⊢ (𝑍 = (∪ 𝐽 ∖ 𝑋) → (𝑌 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑍) ↔ (𝑌 ∈ (Clsd‘𝐽) ∧ (𝑋 ∩ 𝑌) = ∅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∖ cdif 3942 ∩ cin 3944 ∅c0 4318 𝒫 cpw 4598 ∪ cuni 4903 ‘cfv 6542 Topctop 22788 Clsdccld 22913 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-iota 6494 df-fun 6544 df-fn 6545 df-fv 6550 df-mre 17559 df-top 22789 df-topon 22806 df-cld 22916 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |