Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clddisj Structured version   Visualization version   GIF version

Theorem clddisj 48892
Description: Two ways of saying that two closed sets are disjoint, if 𝐽 is a topology and 𝑋 is a closed set. An alternative proof is similar to that of opndisj 48891 with elssuni 4901 replaced by the combination of cldss 22916 and eqid 2729. (Contributed by Zhi Wang, 6-Sep-2024.)
Assertion
Ref Expression
clddisj (𝑍 = ( 𝐽𝑋) → (𝑌 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑍) ↔ (𝑌 ∈ (Clsd‘𝐽) ∧ (𝑋𝑌) = ∅)))

Proof of Theorem clddisj
StepHypRef Expression
1 elin 3930 . 2 (𝑌 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑍) ↔ (𝑌 ∈ (Clsd‘𝐽) ∧ 𝑌 ∈ 𝒫 𝑍))
2 simpl 482 . . . . 5 ((𝑍 = ( 𝐽𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝑍 = ( 𝐽𝑋))
3 cldrcl 22913 . . . . . . 7 (𝑌 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
4 clduni 48889 . . . . . . . 8 (𝐽 ∈ Top → (Clsd‘𝐽) = 𝐽)
54difeq1d 4088 . . . . . . 7 (𝐽 ∈ Top → ( (Clsd‘𝐽) ∖ 𝑋) = ( 𝐽𝑋))
63, 5syl 17 . . . . . 6 (𝑌 ∈ (Clsd‘𝐽) → ( (Clsd‘𝐽) ∖ 𝑋) = ( 𝐽𝑋))
76adantl 481 . . . . 5 ((𝑍 = ( 𝐽𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → ( (Clsd‘𝐽) ∖ 𝑋) = ( 𝐽𝑋))
82, 7eqtr4d 2767 . . . 4 ((𝑍 = ( 𝐽𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝑍 = ( (Clsd‘𝐽) ∖ 𝑋))
9 opndisj 48891 . . . . . 6 (𝑍 = ( (Clsd‘𝐽) ∖ 𝑋) → (𝑌 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑍) ↔ (𝑌 ∈ (Clsd‘𝐽) ∧ (𝑋𝑌) = ∅)))
101, 9bitr3id 285 . . . . 5 (𝑍 = ( (Clsd‘𝐽) ∖ 𝑋) → ((𝑌 ∈ (Clsd‘𝐽) ∧ 𝑌 ∈ 𝒫 𝑍) ↔ (𝑌 ∈ (Clsd‘𝐽) ∧ (𝑋𝑌) = ∅)))
1110pm5.32dra 48783 . . . 4 ((𝑍 = ( (Clsd‘𝐽) ∖ 𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝑌 ∈ 𝒫 𝑍 ↔ (𝑋𝑌) = ∅))
128, 11sylancom 588 . . 3 ((𝑍 = ( 𝐽𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝑌 ∈ 𝒫 𝑍 ↔ (𝑋𝑌) = ∅))
1312pm5.32da 579 . 2 (𝑍 = ( 𝐽𝑋) → ((𝑌 ∈ (Clsd‘𝐽) ∧ 𝑌 ∈ 𝒫 𝑍) ↔ (𝑌 ∈ (Clsd‘𝐽) ∧ (𝑋𝑌) = ∅)))
141, 13bitrid 283 1 (𝑍 = ( 𝐽𝑋) → (𝑌 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑍) ↔ (𝑌 ∈ (Clsd‘𝐽) ∧ (𝑋𝑌) = ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cdif 3911  cin 3913  c0 4296  𝒫 cpw 4563   cuni 4871  cfv 6511  Topctop 22780  Clsdccld 22903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519  df-mre 17547  df-top 22781  df-topon 22798  df-cld 22906
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator