Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clddisj Structured version   Visualization version   GIF version

Theorem clddisj 47916
Description: Two ways of saying that two closed sets are disjoint, if 𝐽 is a topology and 𝑋 is a closed set. An alternative proof is similar to that of opndisj 47915 with elssuni 4935 replaced by the combination of cldss 22926 and eqid 2728. (Contributed by Zhi Wang, 6-Sep-2024.)
Assertion
Ref Expression
clddisj (𝑍 = ( 𝐽𝑋) → (𝑌 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑍) ↔ (𝑌 ∈ (Clsd‘𝐽) ∧ (𝑋𝑌) = ∅)))

Proof of Theorem clddisj
StepHypRef Expression
1 elin 3961 . 2 (𝑌 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑍) ↔ (𝑌 ∈ (Clsd‘𝐽) ∧ 𝑌 ∈ 𝒫 𝑍))
2 simpl 482 . . . . 5 ((𝑍 = ( 𝐽𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝑍 = ( 𝐽𝑋))
3 cldrcl 22923 . . . . . . 7 (𝑌 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
4 clduni 47913 . . . . . . . 8 (𝐽 ∈ Top → (Clsd‘𝐽) = 𝐽)
54difeq1d 4117 . . . . . . 7 (𝐽 ∈ Top → ( (Clsd‘𝐽) ∖ 𝑋) = ( 𝐽𝑋))
63, 5syl 17 . . . . . 6 (𝑌 ∈ (Clsd‘𝐽) → ( (Clsd‘𝐽) ∖ 𝑋) = ( 𝐽𝑋))
76adantl 481 . . . . 5 ((𝑍 = ( 𝐽𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → ( (Clsd‘𝐽) ∖ 𝑋) = ( 𝐽𝑋))
82, 7eqtr4d 2771 . . . 4 ((𝑍 = ( 𝐽𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝑍 = ( (Clsd‘𝐽) ∖ 𝑋))
9 opndisj 47915 . . . . . 6 (𝑍 = ( (Clsd‘𝐽) ∖ 𝑋) → (𝑌 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑍) ↔ (𝑌 ∈ (Clsd‘𝐽) ∧ (𝑋𝑌) = ∅)))
101, 9bitr3id 285 . . . . 5 (𝑍 = ( (Clsd‘𝐽) ∖ 𝑋) → ((𝑌 ∈ (Clsd‘𝐽) ∧ 𝑌 ∈ 𝒫 𝑍) ↔ (𝑌 ∈ (Clsd‘𝐽) ∧ (𝑋𝑌) = ∅)))
1110pm5.32dra 47861 . . . 4 ((𝑍 = ( (Clsd‘𝐽) ∖ 𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝑌 ∈ 𝒫 𝑍 ↔ (𝑋𝑌) = ∅))
128, 11sylancom 587 . . 3 ((𝑍 = ( 𝐽𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝑌 ∈ 𝒫 𝑍 ↔ (𝑋𝑌) = ∅))
1312pm5.32da 578 . 2 (𝑍 = ( 𝐽𝑋) → ((𝑌 ∈ (Clsd‘𝐽) ∧ 𝑌 ∈ 𝒫 𝑍) ↔ (𝑌 ∈ (Clsd‘𝐽) ∧ (𝑋𝑌) = ∅)))
141, 13bitrid 283 1 (𝑍 = ( 𝐽𝑋) → (𝑌 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑍) ↔ (𝑌 ∈ (Clsd‘𝐽) ∧ (𝑋𝑌) = ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  cdif 3942  cin 3944  c0 4318  𝒫 cpw 4598   cuni 4903  cfv 6542  Topctop 22788  Clsdccld 22913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-iota 6494  df-fun 6544  df-fn 6545  df-fv 6550  df-mre 17559  df-top 22789  df-topon 22806  df-cld 22916
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator