| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > clddisj | Structured version Visualization version GIF version | ||
| Description: Two ways of saying that two closed sets are disjoint, if 𝐽 is a topology and 𝑋 is a closed set. An alternative proof is similar to that of opndisj 49064 with elssuni 4891 replaced by the combination of cldss 22964 and eqid 2733. (Contributed by Zhi Wang, 6-Sep-2024.) |
| Ref | Expression |
|---|---|
| clddisj | ⊢ (𝑍 = (∪ 𝐽 ∖ 𝑋) → (𝑌 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑍) ↔ (𝑌 ∈ (Clsd‘𝐽) ∧ (𝑋 ∩ 𝑌) = ∅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3914 | . 2 ⊢ (𝑌 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑍) ↔ (𝑌 ∈ (Clsd‘𝐽) ∧ 𝑌 ∈ 𝒫 𝑍)) | |
| 2 | simpl 482 | . . . . 5 ⊢ ((𝑍 = (∪ 𝐽 ∖ 𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝑍 = (∪ 𝐽 ∖ 𝑋)) | |
| 3 | cldrcl 22961 | . . . . . . 7 ⊢ (𝑌 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) | |
| 4 | clduni 49062 | . . . . . . . 8 ⊢ (𝐽 ∈ Top → ∪ (Clsd‘𝐽) = ∪ 𝐽) | |
| 5 | 4 | difeq1d 4074 | . . . . . . 7 ⊢ (𝐽 ∈ Top → (∪ (Clsd‘𝐽) ∖ 𝑋) = (∪ 𝐽 ∖ 𝑋)) |
| 6 | 3, 5 | syl 17 | . . . . . 6 ⊢ (𝑌 ∈ (Clsd‘𝐽) → (∪ (Clsd‘𝐽) ∖ 𝑋) = (∪ 𝐽 ∖ 𝑋)) |
| 7 | 6 | adantl 481 | . . . . 5 ⊢ ((𝑍 = (∪ 𝐽 ∖ 𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (∪ (Clsd‘𝐽) ∖ 𝑋) = (∪ 𝐽 ∖ 𝑋)) |
| 8 | 2, 7 | eqtr4d 2771 | . . . 4 ⊢ ((𝑍 = (∪ 𝐽 ∖ 𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝑍 = (∪ (Clsd‘𝐽) ∖ 𝑋)) |
| 9 | opndisj 49064 | . . . . . 6 ⊢ (𝑍 = (∪ (Clsd‘𝐽) ∖ 𝑋) → (𝑌 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑍) ↔ (𝑌 ∈ (Clsd‘𝐽) ∧ (𝑋 ∩ 𝑌) = ∅))) | |
| 10 | 1, 9 | bitr3id 285 | . . . . 5 ⊢ (𝑍 = (∪ (Clsd‘𝐽) ∖ 𝑋) → ((𝑌 ∈ (Clsd‘𝐽) ∧ 𝑌 ∈ 𝒫 𝑍) ↔ (𝑌 ∈ (Clsd‘𝐽) ∧ (𝑋 ∩ 𝑌) = ∅))) |
| 11 | 10 | pm5.32dra 48956 | . . . 4 ⊢ ((𝑍 = (∪ (Clsd‘𝐽) ∖ 𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝑌 ∈ 𝒫 𝑍 ↔ (𝑋 ∩ 𝑌) = ∅)) |
| 12 | 8, 11 | sylancom 588 | . . 3 ⊢ ((𝑍 = (∪ 𝐽 ∖ 𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝑌 ∈ 𝒫 𝑍 ↔ (𝑋 ∩ 𝑌) = ∅)) |
| 13 | 12 | pm5.32da 579 | . 2 ⊢ (𝑍 = (∪ 𝐽 ∖ 𝑋) → ((𝑌 ∈ (Clsd‘𝐽) ∧ 𝑌 ∈ 𝒫 𝑍) ↔ (𝑌 ∈ (Clsd‘𝐽) ∧ (𝑋 ∩ 𝑌) = ∅))) |
| 14 | 1, 13 | bitrid 283 | 1 ⊢ (𝑍 = (∪ 𝐽 ∖ 𝑋) → (𝑌 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑍) ↔ (𝑌 ∈ (Clsd‘𝐽) ∧ (𝑋 ∩ 𝑌) = ∅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∖ cdif 3895 ∩ cin 3897 ∅c0 4282 𝒫 cpw 4551 ∪ cuni 4860 ‘cfv 6489 Topctop 22828 Clsdccld 22951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-iota 6445 df-fun 6491 df-fn 6492 df-fv 6497 df-mre 17496 df-top 22829 df-topon 22846 df-cld 22954 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |