![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > clddisj | Structured version Visualization version GIF version |
Description: Two ways of saying that two closed sets are disjoint, if 𝐽 is a topology and 𝑋 is a closed set. An alternative proof is similar to that of opndisj 48582 with elssuni 4961 replaced by the combination of cldss 23058 and eqid 2740. (Contributed by Zhi Wang, 6-Sep-2024.) |
Ref | Expression |
---|---|
clddisj | ⊢ (𝑍 = (∪ 𝐽 ∖ 𝑋) → (𝑌 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑍) ↔ (𝑌 ∈ (Clsd‘𝐽) ∧ (𝑋 ∩ 𝑌) = ∅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3992 | . 2 ⊢ (𝑌 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑍) ↔ (𝑌 ∈ (Clsd‘𝐽) ∧ 𝑌 ∈ 𝒫 𝑍)) | |
2 | simpl 482 | . . . . 5 ⊢ ((𝑍 = (∪ 𝐽 ∖ 𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝑍 = (∪ 𝐽 ∖ 𝑋)) | |
3 | cldrcl 23055 | . . . . . . 7 ⊢ (𝑌 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) | |
4 | clduni 48580 | . . . . . . . 8 ⊢ (𝐽 ∈ Top → ∪ (Clsd‘𝐽) = ∪ 𝐽) | |
5 | 4 | difeq1d 4148 | . . . . . . 7 ⊢ (𝐽 ∈ Top → (∪ (Clsd‘𝐽) ∖ 𝑋) = (∪ 𝐽 ∖ 𝑋)) |
6 | 3, 5 | syl 17 | . . . . . 6 ⊢ (𝑌 ∈ (Clsd‘𝐽) → (∪ (Clsd‘𝐽) ∖ 𝑋) = (∪ 𝐽 ∖ 𝑋)) |
7 | 6 | adantl 481 | . . . . 5 ⊢ ((𝑍 = (∪ 𝐽 ∖ 𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (∪ (Clsd‘𝐽) ∖ 𝑋) = (∪ 𝐽 ∖ 𝑋)) |
8 | 2, 7 | eqtr4d 2783 | . . . 4 ⊢ ((𝑍 = (∪ 𝐽 ∖ 𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝑍 = (∪ (Clsd‘𝐽) ∖ 𝑋)) |
9 | opndisj 48582 | . . . . . 6 ⊢ (𝑍 = (∪ (Clsd‘𝐽) ∖ 𝑋) → (𝑌 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑍) ↔ (𝑌 ∈ (Clsd‘𝐽) ∧ (𝑋 ∩ 𝑌) = ∅))) | |
10 | 1, 9 | bitr3id 285 | . . . . 5 ⊢ (𝑍 = (∪ (Clsd‘𝐽) ∖ 𝑋) → ((𝑌 ∈ (Clsd‘𝐽) ∧ 𝑌 ∈ 𝒫 𝑍) ↔ (𝑌 ∈ (Clsd‘𝐽) ∧ (𝑋 ∩ 𝑌) = ∅))) |
11 | 10 | pm5.32dra 48528 | . . . 4 ⊢ ((𝑍 = (∪ (Clsd‘𝐽) ∖ 𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝑌 ∈ 𝒫 𝑍 ↔ (𝑋 ∩ 𝑌) = ∅)) |
12 | 8, 11 | sylancom 587 | . . 3 ⊢ ((𝑍 = (∪ 𝐽 ∖ 𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝑌 ∈ 𝒫 𝑍 ↔ (𝑋 ∩ 𝑌) = ∅)) |
13 | 12 | pm5.32da 578 | . 2 ⊢ (𝑍 = (∪ 𝐽 ∖ 𝑋) → ((𝑌 ∈ (Clsd‘𝐽) ∧ 𝑌 ∈ 𝒫 𝑍) ↔ (𝑌 ∈ (Clsd‘𝐽) ∧ (𝑋 ∩ 𝑌) = ∅))) |
14 | 1, 13 | bitrid 283 | 1 ⊢ (𝑍 = (∪ 𝐽 ∖ 𝑋) → (𝑌 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑍) ↔ (𝑌 ∈ (Clsd‘𝐽) ∧ (𝑋 ∩ 𝑌) = ∅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∖ cdif 3973 ∩ cin 3975 ∅c0 4352 𝒫 cpw 4622 ∪ cuni 4931 ‘cfv 6573 Topctop 22920 Clsdccld 23045 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fn 6576 df-fv 6581 df-mre 17644 df-top 22921 df-topon 22938 df-cld 23048 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |