Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clddisj Structured version   Visualization version   GIF version

Theorem clddisj 47184
Description: Two ways of saying that two closed sets are disjoint, if 𝐽 is a topology and 𝑋 is a closed set. An alternative proof is similar to that of opndisj 47183 with elssuni 4934 replaced by the combination of cldss 22462 and eqid 2731. (Contributed by Zhi Wang, 6-Sep-2024.)
Assertion
Ref Expression
clddisj (𝑍 = ( 𝐽𝑋) → (𝑌 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑍) ↔ (𝑌 ∈ (Clsd‘𝐽) ∧ (𝑋𝑌) = ∅)))

Proof of Theorem clddisj
StepHypRef Expression
1 elin 3960 . 2 (𝑌 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑍) ↔ (𝑌 ∈ (Clsd‘𝐽) ∧ 𝑌 ∈ 𝒫 𝑍))
2 simpl 483 . . . . 5 ((𝑍 = ( 𝐽𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝑍 = ( 𝐽𝑋))
3 cldrcl 22459 . . . . . . 7 (𝑌 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
4 clduni 47181 . . . . . . . 8 (𝐽 ∈ Top → (Clsd‘𝐽) = 𝐽)
54difeq1d 4117 . . . . . . 7 (𝐽 ∈ Top → ( (Clsd‘𝐽) ∖ 𝑋) = ( 𝐽𝑋))
63, 5syl 17 . . . . . 6 (𝑌 ∈ (Clsd‘𝐽) → ( (Clsd‘𝐽) ∖ 𝑋) = ( 𝐽𝑋))
76adantl 482 . . . . 5 ((𝑍 = ( 𝐽𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → ( (Clsd‘𝐽) ∖ 𝑋) = ( 𝐽𝑋))
82, 7eqtr4d 2774 . . . 4 ((𝑍 = ( 𝐽𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝑍 = ( (Clsd‘𝐽) ∖ 𝑋))
9 opndisj 47183 . . . . . 6 (𝑍 = ( (Clsd‘𝐽) ∖ 𝑋) → (𝑌 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑍) ↔ (𝑌 ∈ (Clsd‘𝐽) ∧ (𝑋𝑌) = ∅)))
101, 9bitr3id 284 . . . . 5 (𝑍 = ( (Clsd‘𝐽) ∖ 𝑋) → ((𝑌 ∈ (Clsd‘𝐽) ∧ 𝑌 ∈ 𝒫 𝑍) ↔ (𝑌 ∈ (Clsd‘𝐽) ∧ (𝑋𝑌) = ∅)))
1110pm5.32dra 47128 . . . 4 ((𝑍 = ( (Clsd‘𝐽) ∖ 𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝑌 ∈ 𝒫 𝑍 ↔ (𝑋𝑌) = ∅))
128, 11sylancom 588 . . 3 ((𝑍 = ( 𝐽𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝑌 ∈ 𝒫 𝑍 ↔ (𝑋𝑌) = ∅))
1312pm5.32da 579 . 2 (𝑍 = ( 𝐽𝑋) → ((𝑌 ∈ (Clsd‘𝐽) ∧ 𝑌 ∈ 𝒫 𝑍) ↔ (𝑌 ∈ (Clsd‘𝐽) ∧ (𝑋𝑌) = ∅)))
141, 13bitrid 282 1 (𝑍 = ( 𝐽𝑋) → (𝑌 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑍) ↔ (𝑌 ∈ (Clsd‘𝐽) ∧ (𝑋𝑌) = ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  cdif 3941  cin 3943  c0 4318  𝒫 cpw 4596   cuni 4901  cfv 6532  Topctop 22324  Clsdccld 22449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-int 4944  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-iota 6484  df-fun 6534  df-fn 6535  df-fv 6540  df-mre 17512  df-top 22325  df-topon 22342  df-cld 22452
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator