![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > clddisj | Structured version Visualization version GIF version |
Description: Two ways of saying that two closed sets are disjoint, if 𝐽 is a topology and 𝑋 is a closed set. An alternative proof is similar to that of opndisj 47183 with elssuni 4934 replaced by the combination of cldss 22462 and eqid 2731. (Contributed by Zhi Wang, 6-Sep-2024.) |
Ref | Expression |
---|---|
clddisj | ⊢ (𝑍 = (∪ 𝐽 ∖ 𝑋) → (𝑌 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑍) ↔ (𝑌 ∈ (Clsd‘𝐽) ∧ (𝑋 ∩ 𝑌) = ∅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3960 | . 2 ⊢ (𝑌 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑍) ↔ (𝑌 ∈ (Clsd‘𝐽) ∧ 𝑌 ∈ 𝒫 𝑍)) | |
2 | simpl 483 | . . . . 5 ⊢ ((𝑍 = (∪ 𝐽 ∖ 𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝑍 = (∪ 𝐽 ∖ 𝑋)) | |
3 | cldrcl 22459 | . . . . . . 7 ⊢ (𝑌 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) | |
4 | clduni 47181 | . . . . . . . 8 ⊢ (𝐽 ∈ Top → ∪ (Clsd‘𝐽) = ∪ 𝐽) | |
5 | 4 | difeq1d 4117 | . . . . . . 7 ⊢ (𝐽 ∈ Top → (∪ (Clsd‘𝐽) ∖ 𝑋) = (∪ 𝐽 ∖ 𝑋)) |
6 | 3, 5 | syl 17 | . . . . . 6 ⊢ (𝑌 ∈ (Clsd‘𝐽) → (∪ (Clsd‘𝐽) ∖ 𝑋) = (∪ 𝐽 ∖ 𝑋)) |
7 | 6 | adantl 482 | . . . . 5 ⊢ ((𝑍 = (∪ 𝐽 ∖ 𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (∪ (Clsd‘𝐽) ∖ 𝑋) = (∪ 𝐽 ∖ 𝑋)) |
8 | 2, 7 | eqtr4d 2774 | . . . 4 ⊢ ((𝑍 = (∪ 𝐽 ∖ 𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝑍 = (∪ (Clsd‘𝐽) ∖ 𝑋)) |
9 | opndisj 47183 | . . . . . 6 ⊢ (𝑍 = (∪ (Clsd‘𝐽) ∖ 𝑋) → (𝑌 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑍) ↔ (𝑌 ∈ (Clsd‘𝐽) ∧ (𝑋 ∩ 𝑌) = ∅))) | |
10 | 1, 9 | bitr3id 284 | . . . . 5 ⊢ (𝑍 = (∪ (Clsd‘𝐽) ∖ 𝑋) → ((𝑌 ∈ (Clsd‘𝐽) ∧ 𝑌 ∈ 𝒫 𝑍) ↔ (𝑌 ∈ (Clsd‘𝐽) ∧ (𝑋 ∩ 𝑌) = ∅))) |
11 | 10 | pm5.32dra 47128 | . . . 4 ⊢ ((𝑍 = (∪ (Clsd‘𝐽) ∖ 𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝑌 ∈ 𝒫 𝑍 ↔ (𝑋 ∩ 𝑌) = ∅)) |
12 | 8, 11 | sylancom 588 | . . 3 ⊢ ((𝑍 = (∪ 𝐽 ∖ 𝑋) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝑌 ∈ 𝒫 𝑍 ↔ (𝑋 ∩ 𝑌) = ∅)) |
13 | 12 | pm5.32da 579 | . 2 ⊢ (𝑍 = (∪ 𝐽 ∖ 𝑋) → ((𝑌 ∈ (Clsd‘𝐽) ∧ 𝑌 ∈ 𝒫 𝑍) ↔ (𝑌 ∈ (Clsd‘𝐽) ∧ (𝑋 ∩ 𝑌) = ∅))) |
14 | 1, 13 | bitrid 282 | 1 ⊢ (𝑍 = (∪ 𝐽 ∖ 𝑋) → (𝑌 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑍) ↔ (𝑌 ∈ (Clsd‘𝐽) ∧ (𝑋 ∩ 𝑌) = ∅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∖ cdif 3941 ∩ cin 3943 ∅c0 4318 𝒫 cpw 4596 ∪ cuni 4901 ‘cfv 6532 Topctop 22324 Clsdccld 22449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-iota 6484 df-fun 6534 df-fn 6535 df-fv 6540 df-mre 17512 df-top 22325 df-topon 22342 df-cld 22452 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |