MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm5.44 Structured version   Visualization version   GIF version

Theorem pm5.44 539
Description: Theorem *5.44 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm5.44 ((𝜑𝜓) → ((𝜑𝜒) ↔ (𝜑 → (𝜓𝜒))))

Proof of Theorem pm5.44
StepHypRef Expression
1 jcab 514 . 2 ((𝜑 → (𝜓𝜒)) ↔ ((𝜑𝜓) ∧ (𝜑𝜒)))
21baibr 533 1 ((𝜑𝜓) → ((𝜑𝜒) ↔ (𝜑 → (𝜓𝜒))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199  df-an 386
This theorem is referenced by:  reldisj  4215
  Copyright terms: Public domain W3C validator