MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jcab Structured version   Visualization version   GIF version

Theorem jcab 517
Description: Distributive law for implication over conjunction. Compare Theorem *4.76 of [WhiteheadRussell] p. 121. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 27-Nov-2013.)
Assertion
Ref Expression
jcab ((𝜑 → (𝜓𝜒)) ↔ ((𝜑𝜓) ∧ (𝜑𝜒)))

Proof of Theorem jcab
StepHypRef Expression
1 simpl 482 . . . 4 ((𝜓𝜒) → 𝜓)
21imim2i 16 . . 3 ((𝜑 → (𝜓𝜒)) → (𝜑𝜓))
3 simpr 484 . . . 4 ((𝜓𝜒) → 𝜒)
43imim2i 16 . . 3 ((𝜑 → (𝜓𝜒)) → (𝜑𝜒))
52, 4jca 511 . 2 ((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) ∧ (𝜑𝜒)))
6 pm3.43 473 . 2 (((𝜑𝜓) ∧ (𝜑𝜒)) → (𝜑 → (𝜓𝜒)))
75, 6impbii 209 1 ((𝜑 → (𝜓𝜒)) ↔ ((𝜑𝜓) ∧ (𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  pm4.76  518  pm5.44  542  ordi  1007  2mo2  2642  ssconb  4092  ssin  4189  2reu4lem  4472  tfr3  8318  trclfvcotr  14913  isprm2  16590  lgsquad2lem2  27321  ostthlem2  27564  pclclN  39929  ifpbibib  43542  elmapintrab  43608  elinintrab  43609  ismnuprim  44326
  Copyright terms: Public domain W3C validator