| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jcab | Structured version Visualization version GIF version | ||
| Description: Distributive law for implication over conjunction. Compare Theorem *4.76 of [WhiteheadRussell] p. 121. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 27-Nov-2013.) |
| Ref | Expression |
|---|---|
| jcab | ⊢ ((𝜑 → (𝜓 ∧ 𝜒)) ↔ ((𝜑 → 𝜓) ∧ (𝜑 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . 4 ⊢ ((𝜓 ∧ 𝜒) → 𝜓) | |
| 2 | 1 | imim2i 16 | . . 3 ⊢ ((𝜑 → (𝜓 ∧ 𝜒)) → (𝜑 → 𝜓)) |
| 3 | simpr 484 | . . . 4 ⊢ ((𝜓 ∧ 𝜒) → 𝜒) | |
| 4 | 3 | imim2i 16 | . . 3 ⊢ ((𝜑 → (𝜓 ∧ 𝜒)) → (𝜑 → 𝜒)) |
| 5 | 2, 4 | jca 511 | . 2 ⊢ ((𝜑 → (𝜓 ∧ 𝜒)) → ((𝜑 → 𝜓) ∧ (𝜑 → 𝜒))) |
| 6 | pm3.43 473 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (𝜑 → 𝜒)) → (𝜑 → (𝜓 ∧ 𝜒))) | |
| 7 | 5, 6 | impbii 209 | 1 ⊢ ((𝜑 → (𝜓 ∧ 𝜒)) ↔ ((𝜑 → 𝜓) ∧ (𝜑 → 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm4.76 518 pm5.44 542 ordi 1007 2mo2 2642 ssconb 4092 ssin 4189 2reu4lem 4472 tfr3 8318 trclfvcotr 14913 isprm2 16590 lgsquad2lem2 27321 ostthlem2 27564 pclclN 39929 ifpbibib 43542 elmapintrab 43608 elinintrab 43609 ismnuprim 44326 |
| Copyright terms: Public domain | W3C validator |