MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jcab Structured version   Visualization version   GIF version

Theorem jcab 517
Description: Distributive law for implication over conjunction. Compare Theorem *4.76 of [WhiteheadRussell] p. 121. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 27-Nov-2013.)
Assertion
Ref Expression
jcab ((𝜑 → (𝜓𝜒)) ↔ ((𝜑𝜓) ∧ (𝜑𝜒)))

Proof of Theorem jcab
StepHypRef Expression
1 simpl 482 . . . 4 ((𝜓𝜒) → 𝜓)
21imim2i 16 . . 3 ((𝜑 → (𝜓𝜒)) → (𝜑𝜓))
3 simpr 484 . . . 4 ((𝜓𝜒) → 𝜒)
43imim2i 16 . . 3 ((𝜑 → (𝜓𝜒)) → (𝜑𝜒))
52, 4jca 511 . 2 ((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) ∧ (𝜑𝜒)))
6 pm3.43 473 . 2 (((𝜑𝜓) ∧ (𝜑𝜒)) → (𝜑 → (𝜓𝜒)))
75, 6impbii 209 1 ((𝜑 → (𝜓𝜒)) ↔ ((𝜑𝜓) ∧ (𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  pm4.76  518  pm5.44  542  ordi  1006  2mo2  2650  ssconb  4165  ssin  4260  2reu4lem  4545  tfr3  8455  trclfvcotr  15058  isprm2  16729  lgsquad2lem2  27447  ostthlem2  27690  pclclN  39848  ifpbibib  43472  elmapintrab  43538  elinintrab  43539  ismnuprim  44263
  Copyright terms: Public domain W3C validator