| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jcab | Structured version Visualization version GIF version | ||
| Description: Distributive law for implication over conjunction. Compare Theorem *4.76 of [WhiteheadRussell] p. 121. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 27-Nov-2013.) |
| Ref | Expression |
|---|---|
| jcab | ⊢ ((𝜑 → (𝜓 ∧ 𝜒)) ↔ ((𝜑 → 𝜓) ∧ (𝜑 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . 4 ⊢ ((𝜓 ∧ 𝜒) → 𝜓) | |
| 2 | 1 | imim2i 16 | . . 3 ⊢ ((𝜑 → (𝜓 ∧ 𝜒)) → (𝜑 → 𝜓)) |
| 3 | simpr 484 | . . . 4 ⊢ ((𝜓 ∧ 𝜒) → 𝜒) | |
| 4 | 3 | imim2i 16 | . . 3 ⊢ ((𝜑 → (𝜓 ∧ 𝜒)) → (𝜑 → 𝜒)) |
| 5 | 2, 4 | jca 511 | . 2 ⊢ ((𝜑 → (𝜓 ∧ 𝜒)) → ((𝜑 → 𝜓) ∧ (𝜑 → 𝜒))) |
| 6 | pm3.43 473 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (𝜑 → 𝜒)) → (𝜑 → (𝜓 ∧ 𝜒))) | |
| 7 | 5, 6 | impbii 209 | 1 ⊢ ((𝜑 → (𝜓 ∧ 𝜒)) ↔ ((𝜑 → 𝜓) ∧ (𝜑 → 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm4.76 518 pm5.44 542 ordi 1007 2mo2 2640 ssconb 4105 ssin 4202 2reu4lem 4485 tfr3 8367 trclfvcotr 14975 isprm2 16652 lgsquad2lem2 27296 ostthlem2 27539 pclclN 39885 ifpbibib 43499 elmapintrab 43565 elinintrab 43566 ismnuprim 44283 |
| Copyright terms: Public domain | W3C validator |