![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > jcab | Structured version Visualization version GIF version |
Description: Distributive law for implication over conjunction. Compare Theorem *4.76 of [WhiteheadRussell] p. 121. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 27-Nov-2013.) |
Ref | Expression |
---|---|
jcab | ⊢ ((𝜑 → (𝜓 ∧ 𝜒)) ↔ ((𝜑 → 𝜓) ∧ (𝜑 → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . 4 ⊢ ((𝜓 ∧ 𝜒) → 𝜓) | |
2 | 1 | imim2i 16 | . . 3 ⊢ ((𝜑 → (𝜓 ∧ 𝜒)) → (𝜑 → 𝜓)) |
3 | simpr 484 | . . . 4 ⊢ ((𝜓 ∧ 𝜒) → 𝜒) | |
4 | 3 | imim2i 16 | . . 3 ⊢ ((𝜑 → (𝜓 ∧ 𝜒)) → (𝜑 → 𝜒)) |
5 | 2, 4 | jca 511 | . 2 ⊢ ((𝜑 → (𝜓 ∧ 𝜒)) → ((𝜑 → 𝜓) ∧ (𝜑 → 𝜒))) |
6 | pm3.43 473 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (𝜑 → 𝜒)) → (𝜑 → (𝜓 ∧ 𝜒))) | |
7 | 5, 6 | impbii 208 | 1 ⊢ ((𝜑 → (𝜓 ∧ 𝜒)) ↔ ((𝜑 → 𝜓) ∧ (𝜑 → 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: pm4.76 518 pm5.44 542 ordi 1004 2mo2 2638 ssconb 4133 ssin 4226 2reu4lem 4521 tfr3 8411 trclfvcotr 14974 isprm2 16638 lgsquad2lem2 27292 ostthlem2 27535 pclclN 39288 ifpbibib 42853 elmapintrab 42919 elinintrab 42920 ismnuprim 43644 |
Copyright terms: Public domain | W3C validator |