| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jcab | Structured version Visualization version GIF version | ||
| Description: Distributive law for implication over conjunction. Compare Theorem *4.76 of [WhiteheadRussell] p. 121. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 27-Nov-2013.) |
| Ref | Expression |
|---|---|
| jcab | ⊢ ((𝜑 → (𝜓 ∧ 𝜒)) ↔ ((𝜑 → 𝜓) ∧ (𝜑 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . 4 ⊢ ((𝜓 ∧ 𝜒) → 𝜓) | |
| 2 | 1 | imim2i 16 | . . 3 ⊢ ((𝜑 → (𝜓 ∧ 𝜒)) → (𝜑 → 𝜓)) |
| 3 | simpr 484 | . . . 4 ⊢ ((𝜓 ∧ 𝜒) → 𝜒) | |
| 4 | 3 | imim2i 16 | . . 3 ⊢ ((𝜑 → (𝜓 ∧ 𝜒)) → (𝜑 → 𝜒)) |
| 5 | 2, 4 | jca 511 | . 2 ⊢ ((𝜑 → (𝜓 ∧ 𝜒)) → ((𝜑 → 𝜓) ∧ (𝜑 → 𝜒))) |
| 6 | pm3.43 473 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (𝜑 → 𝜒)) → (𝜑 → (𝜓 ∧ 𝜒))) | |
| 7 | 5, 6 | impbii 209 | 1 ⊢ ((𝜑 → (𝜓 ∧ 𝜒)) ↔ ((𝜑 → 𝜓) ∧ (𝜑 → 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm4.76 518 pm5.44 542 ordi 1007 2mo2 2645 ssconb 4122 ssin 4219 2reu4lem 4502 tfr3 8421 trclfvcotr 15030 isprm2 16701 lgsquad2lem2 27365 ostthlem2 27608 pclclN 39852 ifpbibib 43485 elmapintrab 43551 elinintrab 43552 ismnuprim 44270 |
| Copyright terms: Public domain | W3C validator |