![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bianabs | Structured version Visualization version GIF version |
Description: Absorb a hypothesis into the second member of a biconditional. (Contributed by FL, 15-Feb-2007.) |
Ref | Expression |
---|---|
bianabs.1 | ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜒))) |
Ref | Expression |
---|---|
bianabs | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bianabs.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜒))) | |
2 | ibar 528 | . 2 ⊢ (𝜑 → (𝜒 ↔ (𝜑 ∧ 𝜒))) | |
3 | 1, 2 | bitr4d 282 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: ceqsrexv 3639 raltpd 4781 opelopab2a 5531 ov 7559 ovg 7580 soseq 8158 ltprord 11045 isfull 17890 isfth 17894 sltval 27567 axcontlem5 28766 isph 30619 cmbr 31381 cvbr 32079 mdbr 32091 dmdbr 32096 brfldext 33271 brfinext 33277 risc 37394 |
Copyright terms: Public domain | W3C validator |