MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bianabs Structured version   Visualization version   GIF version

Theorem bianabs 541
Description: Absorb a hypothesis into the second member of a biconditional. (Contributed by FL, 15-Feb-2007.)
Hypothesis
Ref Expression
bianabs.1 (𝜑 → (𝜓 ↔ (𝜑𝜒)))
Assertion
Ref Expression
bianabs (𝜑 → (𝜓𝜒))

Proof of Theorem bianabs
StepHypRef Expression
1 bianabs.1 . 2 (𝜑 → (𝜓 ↔ (𝜑𝜒)))
2 ibar 528 . 2 (𝜑 → (𝜒 ↔ (𝜑𝜒)))
31, 2bitr4d 282 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  ceqsrexv  3656  raltpd  4787  opelopab2a  5546  ov  7581  ovg  7602  soseq  8189  ltprord  11074  isfull  17970  isfth  17974  sltval  27715  axcontlem5  29006  isph  30864  cmbr  31626  cvbr  32324  mdbr  32336  dmdbr  32341  brfldext  33688  brfinext  33694  risc  37985
  Copyright terms: Public domain W3C validator