| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bianabs | Structured version Visualization version GIF version | ||
| Description: Absorb a hypothesis into the second member of a biconditional. (Contributed by FL, 15-Feb-2007.) |
| Ref | Expression |
|---|---|
| bianabs.1 | ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜒))) |
| Ref | Expression |
|---|---|
| bianabs | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bianabs.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜒))) | |
| 2 | ibar 528 | . 2 ⊢ (𝜑 → (𝜒 ↔ (𝜑 ∧ 𝜒))) | |
| 3 | 1, 2 | bitr4d 282 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ceqsrexv 3639 raltpd 4763 opelopab2a 5522 ov 7560 ovg 7581 soseq 8167 ltprord 11053 isfull 17933 isfth 17937 sltval 27647 axcontlem5 28932 isph 30788 cmbr 31550 cvbr 32248 mdbr 32260 dmdbr 32265 brfldext 33639 brfinext 33645 risc 37934 |
| Copyright terms: Public domain | W3C validator |