| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bianabs | Structured version Visualization version GIF version | ||
| Description: Absorb a hypothesis into the second member of a biconditional. (Contributed by FL, 15-Feb-2007.) |
| Ref | Expression |
|---|---|
| bianabs.1 | ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜒))) |
| Ref | Expression |
|---|---|
| bianabs | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bianabs.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜒))) | |
| 2 | ibar 528 | . 2 ⊢ (𝜑 → (𝜒 ↔ (𝜑 ∧ 𝜒))) | |
| 3 | 1, 2 | bitr4d 282 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ceqsrexv 3624 raltpd 4747 opelopab2a 5497 ov 7535 ovg 7556 soseq 8140 ltprord 10989 isfull 17880 isfth 17884 sltval 27565 axcontlem5 28901 isph 30757 cmbr 31519 cvbr 32217 mdbr 32229 dmdbr 32234 brfldext 33647 brfinext 33654 risc 37975 |
| Copyright terms: Public domain | W3C validator |