![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bianabs | Structured version Visualization version GIF version |
Description: Absorb a hypothesis into the second member of a biconditional. (Contributed by FL, 15-Feb-2007.) |
Ref | Expression |
---|---|
bianabs.1 | ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜒))) |
Ref | Expression |
---|---|
bianabs | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bianabs.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜒))) | |
2 | ibar 529 | . 2 ⊢ (𝜑 → (𝜒 ↔ (𝜑 ∧ 𝜒))) | |
3 | 1, 2 | bitr4d 281 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: ceqsrexv 3643 raltpd 4785 opelopab2a 5535 ov 7551 ovg 7571 soseq 8144 ltprord 11024 isfull 17860 isfth 17864 sltval 27147 axcontlem5 28223 isph 30070 cmbr 30832 cvbr 31530 mdbr 31542 dmdbr 31547 brfldext 32721 brfinext 32727 risc 36849 |
Copyright terms: Public domain | W3C validator |