![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bianabs | Structured version Visualization version GIF version |
Description: Absorb a hypothesis into the second member of a biconditional. (Contributed by FL, 15-Feb-2007.) |
Ref | Expression |
---|---|
bianabs.1 | ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜒))) |
Ref | Expression |
---|---|
bianabs | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bianabs.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜒))) | |
2 | ibar 527 | . 2 ⊢ (𝜑 → (𝜒 ↔ (𝜑 ∧ 𝜒))) | |
3 | 1, 2 | bitr4d 281 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 |
This theorem is referenced by: ceqsrexv 3639 raltpd 4786 opelopab2a 5536 ov 7563 ovg 7584 soseq 8162 ltprord 11053 isfull 17898 isfth 17902 sltval 27610 axcontlem5 28835 isph 30688 cmbr 31450 cvbr 32148 mdbr 32160 dmdbr 32165 brfldext 33409 brfinext 33415 risc 37529 |
Copyright terms: Public domain | W3C validator |