MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bianabs Structured version   Visualization version   GIF version

Theorem bianabs 541
Description: Absorb a hypothesis into the second member of a biconditional. (Contributed by FL, 15-Feb-2007.)
Hypothesis
Ref Expression
bianabs.1 (𝜑 → (𝜓 ↔ (𝜑𝜒)))
Assertion
Ref Expression
bianabs (𝜑 → (𝜓𝜒))

Proof of Theorem bianabs
StepHypRef Expression
1 bianabs.1 . 2 (𝜑 → (𝜓 ↔ (𝜑𝜒)))
2 ibar 528 . 2 (𝜑 → (𝜒 ↔ (𝜑𝜒)))
31, 2bitr4d 282 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  ceqsrexv  3639  raltpd  4763  opelopab2a  5522  ov  7560  ovg  7581  soseq  8167  ltprord  11053  isfull  17933  isfth  17937  sltval  27647  axcontlem5  28932  isph  30788  cmbr  31550  cvbr  32248  mdbr  32260  dmdbr  32265  brfldext  33639  brfinext  33645  risc  37934
  Copyright terms: Public domain W3C validator