| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bianabs | Structured version Visualization version GIF version | ||
| Description: Absorb a hypothesis into the second member of a biconditional. (Contributed by FL, 15-Feb-2007.) |
| Ref | Expression |
|---|---|
| bianabs.1 | ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜒))) |
| Ref | Expression |
|---|---|
| bianabs | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bianabs.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜒))) | |
| 2 | ibar 528 | . 2 ⊢ (𝜑 → (𝜒 ↔ (𝜑 ∧ 𝜒))) | |
| 3 | 1, 2 | bitr4d 282 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ceqsrexv 3605 raltpd 4731 opelopab2a 5473 ov 7490 ovg 7511 soseq 8089 ltprord 10921 isfull 17819 isfth 17823 sltval 27586 axcontlem5 28946 isph 30802 cmbr 31564 cvbr 32262 mdbr 32274 dmdbr 32279 brfldext 33658 brfinext 33665 risc 38025 |
| Copyright terms: Public domain | W3C validator |