MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bianabs Structured version   Visualization version   GIF version

Theorem bianabs 541
Description: Absorb a hypothesis into the second member of a biconditional. (Contributed by FL, 15-Feb-2007.)
Hypothesis
Ref Expression
bianabs.1 (𝜑 → (𝜓 ↔ (𝜑𝜒)))
Assertion
Ref Expression
bianabs (𝜑 → (𝜓𝜒))

Proof of Theorem bianabs
StepHypRef Expression
1 bianabs.1 . 2 (𝜑 → (𝜓 ↔ (𝜑𝜒)))
2 ibar 528 . 2 (𝜑 → (𝜒 ↔ (𝜑𝜒)))
31, 2bitr4d 282 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  ceqsrexv  3610  raltpd  4733  opelopab2a  5478  ov  7493  ovg  7514  soseq  8092  ltprord  10924  isfull  17819  isfth  17823  sltval  27557  axcontlem5  28913  isph  30766  cmbr  31528  cvbr  32226  mdbr  32238  dmdbr  32243  brfldext  33618  brfinext  33625  risc  37976
  Copyright terms: Public domain W3C validator