MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bianabs Structured version   Visualization version   GIF version

Theorem bianabs 540
Description: Absorb a hypothesis into the second member of a biconditional. (Contributed by FL, 15-Feb-2007.)
Hypothesis
Ref Expression
bianabs.1 (𝜑 → (𝜓 ↔ (𝜑𝜒)))
Assertion
Ref Expression
bianabs (𝜑 → (𝜓𝜒))

Proof of Theorem bianabs
StepHypRef Expression
1 bianabs.1 . 2 (𝜑 → (𝜓 ↔ (𝜑𝜒)))
2 ibar 527 . 2 (𝜑 → (𝜒 ↔ (𝜑𝜒)))
31, 2bitr4d 281 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 395
This theorem is referenced by:  ceqsrexv  3639  raltpd  4786  opelopab2a  5536  ov  7563  ovg  7584  soseq  8162  ltprord  11053  isfull  17898  isfth  17902  sltval  27610  axcontlem5  28835  isph  30688  cmbr  31450  cvbr  32148  mdbr  32160  dmdbr  32165  brfldext  33409  brfinext  33415  risc  37529
  Copyright terms: Public domain W3C validator