MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bianabs Structured version   Visualization version   GIF version

Theorem bianabs 542
Description: Absorb a hypothesis into the second member of a biconditional. (Contributed by FL, 15-Feb-2007.)
Hypothesis
Ref Expression
bianabs.1 (𝜑 → (𝜓 ↔ (𝜑𝜒)))
Assertion
Ref Expression
bianabs (𝜑 → (𝜓𝜒))

Proof of Theorem bianabs
StepHypRef Expression
1 bianabs.1 . 2 (𝜑 → (𝜓 ↔ (𝜑𝜒)))
2 ibar 529 . 2 (𝜑 → (𝜒 ↔ (𝜑𝜒)))
31, 2bitr4d 281 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  ceqsrexv  3585  raltpd  4717  opelopab2a  5448  ov  7417  ovg  7437  ltprord  10786  isfull  17626  isfth  17630  axcontlem5  27336  isph  29184  cmbr  29946  cvbr  30644  mdbr  30656  dmdbr  30661  brfldext  31722  brfinext  31728  soseq  33803  sltval  33850  risc  36144
  Copyright terms: Public domain W3C validator