MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bianabs Structured version   Visualization version   GIF version

Theorem bianabs 541
Description: Absorb a hypothesis into the second member of a biconditional. (Contributed by FL, 15-Feb-2007.)
Hypothesis
Ref Expression
bianabs.1 (𝜑 → (𝜓 ↔ (𝜑𝜒)))
Assertion
Ref Expression
bianabs (𝜑 → (𝜓𝜒))

Proof of Theorem bianabs
StepHypRef Expression
1 bianabs.1 . 2 (𝜑 → (𝜓 ↔ (𝜑𝜒)))
2 ibar 528 . 2 (𝜑 → (𝜒 ↔ (𝜑𝜒)))
31, 2bitr4d 282 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  ceqsrexv  3624  raltpd  4747  opelopab2a  5497  ov  7535  ovg  7556  soseq  8140  ltprord  10989  isfull  17880  isfth  17884  sltval  27565  axcontlem5  28901  isph  30757  cmbr  31519  cvbr  32217  mdbr  32229  dmdbr  32234  brfldext  33647  brfinext  33654  risc  37975
  Copyright terms: Public domain W3C validator