| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bianabs | Structured version Visualization version GIF version | ||
| Description: Absorb a hypothesis into the second member of a biconditional. (Contributed by FL, 15-Feb-2007.) |
| Ref | Expression |
|---|---|
| bianabs.1 | ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜒))) |
| Ref | Expression |
|---|---|
| bianabs | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bianabs.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜒))) | |
| 2 | ibar 528 | . 2 ⊢ (𝜑 → (𝜒 ↔ (𝜑 ∧ 𝜒))) | |
| 3 | 1, 2 | bitr4d 282 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ceqsrexv 3618 raltpd 4741 opelopab2a 5490 ov 7513 ovg 7534 soseq 8115 ltprord 10959 isfull 17854 isfth 17858 sltval 27592 axcontlem5 28948 isph 30801 cmbr 31563 cvbr 32261 mdbr 32273 dmdbr 32278 brfldext 33634 brfinext 33641 risc 37973 |
| Copyright terms: Public domain | W3C validator |