| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bianabs | Structured version Visualization version GIF version | ||
| Description: Absorb a hypothesis into the second member of a biconditional. (Contributed by FL, 15-Feb-2007.) |
| Ref | Expression |
|---|---|
| bianabs.1 | ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜒))) |
| Ref | Expression |
|---|---|
| bianabs | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bianabs.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜒))) | |
| 2 | ibar 528 | . 2 ⊢ (𝜑 → (𝜒 ↔ (𝜑 ∧ 𝜒))) | |
| 3 | 1, 2 | bitr4d 282 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ceqsrexv 3610 raltpd 4733 opelopab2a 5478 ov 7493 ovg 7514 soseq 8092 ltprord 10924 isfull 17819 isfth 17823 sltval 27557 axcontlem5 28913 isph 30766 cmbr 31528 cvbr 32226 mdbr 32238 dmdbr 32243 brfldext 33618 brfinext 33625 risc 37976 |
| Copyright terms: Public domain | W3C validator |