| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > baibr | Structured version Visualization version GIF version | ||
| Description: Move conjunction outside of biconditional. (Contributed by NM, 11-Jul-1994.) |
| Ref | Expression |
|---|---|
| baib.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| baibr | ⊢ (𝜓 → (𝜒 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baib.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | 1 | baib 535 | . 2 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
| 3 | 2 | bicomd 223 | 1 ⊢ (𝜓 → (𝜒 ↔ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: rbaibr 537 pm5.44 542 exmoeub 2573 ssnelpss 4073 brinxp 5710 copsex2ga 5761 canth 7323 riotaxfrd 7360 iscard 9904 kmlem14 10093 ltxrlt 11220 elioo5 13340 prmind2 16631 pcelnn 16817 isnirred 20305 isdomn3 20600 isreg2 23240 comppfsc 23395 kqcldsat 23596 elmptrab 23690 itg2uba 25620 prmorcht 27064 adjeq 31837 lnopcnbd 31938 cvexchlem 32270 maprnin 32627 topfne 36315 ismblfin 37628 ftc1anclem5 37664 isdmn2 38022 cdlemefrs29pre00 40362 cdlemefrs29cpre1 40365 elmapintab 43558 bits0ALTV 47653 |
| Copyright terms: Public domain | W3C validator |