![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > baibr | Structured version Visualization version GIF version |
Description: Move conjunction outside of biconditional. (Contributed by NM, 11-Jul-1994.) |
Ref | Expression |
---|---|
baib.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
baibr | ⊢ (𝜓 → (𝜒 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baib.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | 1 | baib 535 | . 2 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
3 | 2 | bicomd 223 | 1 ⊢ (𝜓 → (𝜒 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: rbaibr 537 pm5.44 542 exmoeub 2583 ssnelpss 4137 brinxp 5778 copsex2ga 5831 canth 7401 riotaxfrd 7439 iscard 10044 kmlem14 10233 ltxrlt 11360 elioo5 13464 prmind2 16732 pcelnn 16917 isnirred 20446 isdomn3 20737 isreg2 23406 comppfsc 23561 kqcldsat 23762 elmptrab 23856 itg2uba 25798 prmorcht 27239 adjeq 31967 lnopcnbd 32068 cvexchlem 32400 maprnin 32745 topfne 36320 ismblfin 37621 ftc1anclem5 37657 isdmn2 38015 cdlemefrs29pre00 40352 cdlemefrs29cpre1 40355 elmapintab 43558 bits0ALTV 47553 |
Copyright terms: Public domain | W3C validator |