| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > baibr | Structured version Visualization version GIF version | ||
| Description: Move conjunction outside of biconditional. (Contributed by NM, 11-Jul-1994.) |
| Ref | Expression |
|---|---|
| baib.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| baibr | ⊢ (𝜓 → (𝜒 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baib.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | 1 | baib 535 | . 2 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
| 3 | 2 | bicomd 223 | 1 ⊢ (𝜓 → (𝜒 ↔ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: rbaibr 537 pm5.44 542 exmoeub 2575 ssnelpss 4059 brinxp 5690 copsex2ga 5742 canth 7295 riotaxfrd 7332 iscard 9863 kmlem14 10050 ltxrlt 11178 elioo5 13298 prmind2 16591 pcelnn 16777 isnirred 20333 isdomn3 20625 isreg2 23287 comppfsc 23442 kqcldsat 23643 elmptrab 23737 itg2uba 25666 prmorcht 27110 adjeq 31907 lnopcnbd 32008 cvexchlem 32340 maprnin 32706 topfne 36388 ismblfin 37701 ftc1anclem5 37737 isdmn2 38095 cdlemefrs29pre00 40434 cdlemefrs29cpre1 40437 elmapintab 43629 bits0ALTV 47710 |
| Copyright terms: Public domain | W3C validator |