![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > baibr | Structured version Visualization version GIF version |
Description: Move conjunction outside of biconditional. (Contributed by NM, 11-Jul-1994.) |
Ref | Expression |
---|---|
baib.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
baibr | ⊢ (𝜓 → (𝜒 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baib.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | 1 | baib 535 | . 2 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
3 | 2 | bicomd 223 | 1 ⊢ (𝜓 → (𝜒 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: rbaibr 537 pm5.44 542 exmoeub 2578 ssnelpss 4124 brinxp 5767 copsex2ga 5820 canth 7385 riotaxfrd 7422 iscard 10013 kmlem14 10202 ltxrlt 11329 elioo5 13441 prmind2 16719 pcelnn 16904 isnirred 20437 isdomn3 20732 isreg2 23401 comppfsc 23556 kqcldsat 23757 elmptrab 23851 itg2uba 25793 prmorcht 27236 adjeq 31964 lnopcnbd 32065 cvexchlem 32397 maprnin 32749 topfne 36337 ismblfin 37648 ftc1anclem5 37684 isdmn2 38042 cdlemefrs29pre00 40378 cdlemefrs29cpre1 40381 elmapintab 43586 bits0ALTV 47604 |
Copyright terms: Public domain | W3C validator |