| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > baibr | Structured version Visualization version GIF version | ||
| Description: Move conjunction outside of biconditional. (Contributed by NM, 11-Jul-1994.) |
| Ref | Expression |
|---|---|
| baib.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| baibr | ⊢ (𝜓 → (𝜒 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baib.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | 1 | baib 535 | . 2 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
| 3 | 2 | bicomd 223 | 1 ⊢ (𝜓 → (𝜒 ↔ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: rbaibr 537 pm5.44 542 exmoeub 2573 ssnelpss 4077 brinxp 5717 copsex2ga 5770 canth 7341 riotaxfrd 7378 iscard 9928 kmlem14 10117 ltxrlt 11244 elioo5 13364 prmind2 16655 pcelnn 16841 isnirred 20329 isdomn3 20624 isreg2 23264 comppfsc 23419 kqcldsat 23620 elmptrab 23714 itg2uba 25644 prmorcht 27088 adjeq 31864 lnopcnbd 31965 cvexchlem 32297 maprnin 32654 topfne 36342 ismblfin 37655 ftc1anclem5 37691 isdmn2 38049 cdlemefrs29pre00 40389 cdlemefrs29cpre1 40392 elmapintab 43585 bits0ALTV 47680 |
| Copyright terms: Public domain | W3C validator |