MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  baibr Structured version   Visualization version   GIF version

Theorem baibr 536
Description: Move conjunction outside of biconditional. (Contributed by NM, 11-Jul-1994.)
Hypothesis
Ref Expression
baib.1 (𝜑 ↔ (𝜓𝜒))
Assertion
Ref Expression
baibr (𝜓 → (𝜒𝜑))

Proof of Theorem baibr
StepHypRef Expression
1 baib.1 . . 3 (𝜑 ↔ (𝜓𝜒))
21baib 535 . 2 (𝜓 → (𝜑𝜒))
32bicomd 223 1 (𝜓 → (𝜒𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  rbaibr  537  pm5.44  542  exmoeub  2583  ssnelpss  4137  brinxp  5778  copsex2ga  5831  canth  7401  riotaxfrd  7439  iscard  10044  kmlem14  10233  ltxrlt  11360  elioo5  13464  prmind2  16732  pcelnn  16917  isnirred  20446  isdomn3  20737  isreg2  23406  comppfsc  23561  kqcldsat  23762  elmptrab  23856  itg2uba  25798  prmorcht  27239  adjeq  31967  lnopcnbd  32068  cvexchlem  32400  maprnin  32745  topfne  36320  ismblfin  37621  ftc1anclem5  37657  isdmn2  38015  cdlemefrs29pre00  40352  cdlemefrs29cpre1  40355  elmapintab  43558  bits0ALTV  47553
  Copyright terms: Public domain W3C validator