Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > baibr | Structured version Visualization version GIF version |
Description: Move conjunction outside of biconditional. (Contributed by NM, 11-Jul-1994.) |
Ref | Expression |
---|---|
baib.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
baibr | ⊢ (𝜓 → (𝜒 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baib.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | 1 | baib 536 | . 2 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
3 | 2 | bicomd 222 | 1 ⊢ (𝜓 → (𝜒 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: rbaibr 538 pm5.44 543 exmoeub 2580 ssnelpss 4046 brinxp 5665 copsex2ga 5717 canth 7229 riotaxfrd 7267 iscard 9733 kmlem14 9919 ltxrlt 11045 elioo5 13136 prmind2 16390 pcelnn 16571 isnirred 19942 isreg2 22528 comppfsc 22683 kqcldsat 22884 elmptrab 22978 itg2uba 24908 prmorcht 26327 adjeq 30297 lnopcnbd 30398 cvexchlem 30730 maprnin 31066 topfne 34543 ismblfin 35818 ftc1anclem5 35854 isdmn2 36213 cdlemefrs29pre00 38409 cdlemefrs29cpre1 38412 isdomn3 41029 elmapintab 41204 bits0ALTV 45131 |
Copyright terms: Public domain | W3C validator |