| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > baibr | Structured version Visualization version GIF version | ||
| Description: Move conjunction outside of biconditional. (Contributed by NM, 11-Jul-1994.) |
| Ref | Expression |
|---|---|
| baib.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| baibr | ⊢ (𝜓 → (𝜒 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baib.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | 1 | baib 535 | . 2 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
| 3 | 2 | bicomd 223 | 1 ⊢ (𝜓 → (𝜒 ↔ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: rbaibr 537 pm5.44 542 exmoeub 2574 ssnelpss 4080 brinxp 5720 copsex2ga 5773 canth 7344 riotaxfrd 7381 iscard 9935 kmlem14 10124 ltxrlt 11251 elioo5 13371 prmind2 16662 pcelnn 16848 isnirred 20336 isdomn3 20631 isreg2 23271 comppfsc 23426 kqcldsat 23627 elmptrab 23721 itg2uba 25651 prmorcht 27095 adjeq 31871 lnopcnbd 31972 cvexchlem 32304 maprnin 32661 topfne 36349 ismblfin 37662 ftc1anclem5 37698 isdmn2 38056 cdlemefrs29pre00 40396 cdlemefrs29cpre1 40399 elmapintab 43592 bits0ALTV 47684 |
| Copyright terms: Public domain | W3C validator |