MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  baibr Structured version   Visualization version   GIF version

Theorem baibr 536
Description: Move conjunction outside of biconditional. (Contributed by NM, 11-Jul-1994.)
Hypothesis
Ref Expression
baib.1 (𝜑 ↔ (𝜓𝜒))
Assertion
Ref Expression
baibr (𝜓 → (𝜒𝜑))

Proof of Theorem baibr
StepHypRef Expression
1 baib.1 . . 3 (𝜑 ↔ (𝜓𝜒))
21baib 535 . 2 (𝜓 → (𝜑𝜒))
32bicomd 223 1 (𝜓 → (𝜒𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  rbaibr  537  pm5.44  542  exmoeub  2574  ssnelpss  4080  brinxp  5720  copsex2ga  5773  canth  7344  riotaxfrd  7381  iscard  9935  kmlem14  10124  ltxrlt  11251  elioo5  13371  prmind2  16662  pcelnn  16848  isnirred  20336  isdomn3  20631  isreg2  23271  comppfsc  23426  kqcldsat  23627  elmptrab  23721  itg2uba  25651  prmorcht  27095  adjeq  31871  lnopcnbd  31972  cvexchlem  32304  maprnin  32661  topfne  36349  ismblfin  37662  ftc1anclem5  37698  isdmn2  38056  cdlemefrs29pre00  40396  cdlemefrs29cpre1  40399  elmapintab  43592  bits0ALTV  47684
  Copyright terms: Public domain W3C validator