Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > baibr | Structured version Visualization version GIF version |
Description: Move conjunction outside of biconditional. (Contributed by NM, 11-Jul-1994.) |
Ref | Expression |
---|---|
baib.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
baibr | ⊢ (𝜓 → (𝜒 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baib.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | 1 | baib 535 | . 2 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
3 | 2 | bicomd 222 | 1 ⊢ (𝜓 → (𝜒 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: rbaibr 537 pm5.44 542 exmoeub 2580 ssnelpss 4042 brinxp 5656 copsex2ga 5706 canth 7209 riotaxfrd 7247 iscard 9664 kmlem14 9850 ltxrlt 10976 elioo5 13065 prmind2 16318 pcelnn 16499 isnirred 19857 isreg2 22436 comppfsc 22591 kqcldsat 22792 elmptrab 22886 itg2uba 24813 prmorcht 26232 adjeq 30198 lnopcnbd 30299 cvexchlem 30631 maprnin 30968 topfne 34470 ismblfin 35745 ftc1anclem5 35781 isdmn2 36140 cdlemefrs29pre00 38336 cdlemefrs29cpre1 38339 isdomn3 40945 elmapintab 41093 bits0ALTV 45019 |
Copyright terms: Public domain | W3C validator |