| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > baibr | Structured version Visualization version GIF version | ||
| Description: Move conjunction outside of biconditional. (Contributed by NM, 11-Jul-1994.) |
| Ref | Expression |
|---|---|
| baib.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| baibr | ⊢ (𝜓 → (𝜒 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baib.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | 1 | baib 535 | . 2 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
| 3 | 2 | bicomd 223 | 1 ⊢ (𝜓 → (𝜒 ↔ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: rbaibr 537 pm5.44 542 exmoeub 2579 ssnelpss 4089 brinxp 5733 copsex2ga 5786 canth 7359 riotaxfrd 7396 iscard 9989 kmlem14 10178 ltxrlt 11305 elioo5 13420 prmind2 16704 pcelnn 16890 isnirred 20380 isdomn3 20675 isreg2 23315 comppfsc 23470 kqcldsat 23671 elmptrab 23765 itg2uba 25696 prmorcht 27140 adjeq 31916 lnopcnbd 32017 cvexchlem 32349 maprnin 32708 topfne 36372 ismblfin 37685 ftc1anclem5 37721 isdmn2 38079 cdlemefrs29pre00 40414 cdlemefrs29cpre1 40417 elmapintab 43620 bits0ALTV 47693 |
| Copyright terms: Public domain | W3C validator |