| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > baibr | Structured version Visualization version GIF version | ||
| Description: Move conjunction outside of biconditional. (Contributed by NM, 11-Jul-1994.) |
| Ref | Expression |
|---|---|
| baib.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| baibr | ⊢ (𝜓 → (𝜒 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baib.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | 1 | baib 535 | . 2 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
| 3 | 2 | bicomd 223 | 1 ⊢ (𝜓 → (𝜒 ↔ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: rbaibr 537 pm5.44 542 exmoeub 2573 ssnelpss 4065 brinxp 5698 copsex2ga 5750 canth 7303 riotaxfrd 7340 iscard 9871 kmlem14 10058 ltxrlt 11186 elioo5 13306 prmind2 16596 pcelnn 16782 isnirred 20305 isdomn3 20600 isreg2 23262 comppfsc 23417 kqcldsat 23618 elmptrab 23712 itg2uba 25642 prmorcht 27086 adjeq 31879 lnopcnbd 31980 cvexchlem 32312 maprnin 32674 topfne 36328 ismblfin 37641 ftc1anclem5 37677 isdmn2 38035 cdlemefrs29pre00 40374 cdlemefrs29cpre1 40377 elmapintab 43569 bits0ALTV 47663 |
| Copyright terms: Public domain | W3C validator |