Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > baibr | Structured version Visualization version GIF version |
Description: Move conjunction outside of biconditional. (Contributed by NM, 11-Jul-1994.) |
Ref | Expression |
---|---|
baib.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
baibr | ⊢ (𝜓 → (𝜒 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baib.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | 1 | baib 539 | . 2 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
3 | 2 | bicomd 226 | 1 ⊢ (𝜓 → (𝜒 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 |
This theorem is referenced by: rbaibr 541 pm5.44 546 exmoeub 2579 ssnelpss 4026 brinxp 5627 copsex2ga 5677 canth 7167 riotaxfrd 7205 iscard 9591 kmlem14 9777 ltxrlt 10903 elioo5 12992 prmind2 16242 pcelnn 16423 isnirred 19718 isreg2 22274 comppfsc 22429 kqcldsat 22630 elmptrab 22724 itg2uba 24641 prmorcht 26060 adjeq 30016 lnopcnbd 30117 cvexchlem 30449 maprnin 30786 topfne 34280 ismblfin 35555 ftc1anclem5 35591 isdmn2 35950 cdlemefrs29pre00 38146 cdlemefrs29cpre1 38149 isdomn3 40732 elmapintab 40880 bits0ALTV 44804 |
Copyright terms: Public domain | W3C validator |