MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  baibr Structured version   Visualization version   GIF version

Theorem baibr 536
Description: Move conjunction outside of biconditional. (Contributed by NM, 11-Jul-1994.)
Hypothesis
Ref Expression
baib.1 (𝜑 ↔ (𝜓𝜒))
Assertion
Ref Expression
baibr (𝜓 → (𝜒𝜑))

Proof of Theorem baibr
StepHypRef Expression
1 baib.1 . . 3 (𝜑 ↔ (𝜓𝜒))
21baib 535 . 2 (𝜓 → (𝜑𝜒))
32bicomd 223 1 (𝜓 → (𝜒𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  rbaibr  537  pm5.44  542  exmoeub  2579  ssnelpss  4089  brinxp  5733  copsex2ga  5786  canth  7359  riotaxfrd  7396  iscard  9989  kmlem14  10178  ltxrlt  11305  elioo5  13420  prmind2  16704  pcelnn  16890  isnirred  20380  isdomn3  20675  isreg2  23315  comppfsc  23470  kqcldsat  23671  elmptrab  23765  itg2uba  25696  prmorcht  27140  adjeq  31916  lnopcnbd  32017  cvexchlem  32349  maprnin  32708  topfne  36372  ismblfin  37685  ftc1anclem5  37721  isdmn2  38079  cdlemefrs29pre00  40414  cdlemefrs29cpre1  40417  elmapintab  43620  bits0ALTV  47693
  Copyright terms: Public domain W3C validator