Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reldisj | Structured version Visualization version GIF version |
Description: Two ways of saying that two classes are disjoint, using the complement of 𝐵 relative to a universe 𝐶. (Contributed by NM, 15-Feb-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) Avoid ax-12 2172. (Revised by Gino Giotto, 28-Jun-2024.) |
Ref | Expression |
---|---|
reldisj | ⊢ (𝐴 ⊆ 𝐶 → ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 ⊆ (𝐶 ∖ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3908 | . . . 4 ⊢ (𝐴 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) | |
2 | eleq1w 2822 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
3 | eleq1w 2822 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐶 ↔ 𝑦 ∈ 𝐶)) | |
4 | 2, 3 | imbi12d 345 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) ↔ (𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐶))) |
5 | 4 | spw 2038 | . . . . 5 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) |
6 | pm5.44 543 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) → ((𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵)))) | |
7 | eldif 3898 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐶 ∖ 𝐵) ↔ (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵)) | |
8 | 7 | imbi2i 336 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐶 ∖ 𝐵)) ↔ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵))) |
9 | 6, 8 | bitr4di 289 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) → ((𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐶 ∖ 𝐵)))) |
10 | 5, 9 | syl 17 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) → ((𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐶 ∖ 𝐵)))) |
11 | 1, 10 | sylbi 216 | . . 3 ⊢ (𝐴 ⊆ 𝐶 → ((𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐶 ∖ 𝐵)))) |
12 | 11 | albidv 1924 | . 2 ⊢ (𝐴 ⊆ 𝐶 → (∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐶 ∖ 𝐵)))) |
13 | disj1 4385 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) | |
14 | dfss2 3908 | . 2 ⊢ (𝐴 ⊆ (𝐶 ∖ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐶 ∖ 𝐵))) | |
15 | 12, 13, 14 | 3bitr4g 314 | 1 ⊢ (𝐴 ⊆ 𝐶 → ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 ⊆ (𝐶 ∖ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 = wceq 1539 ∈ wcel 2107 ∖ cdif 3885 ∩ cin 3887 ⊆ wss 3888 ∅c0 4257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-v 3435 df-dif 3891 df-in 3895 df-ss 3905 df-nul 4258 |
This theorem is referenced by: disj2 4392 ssdifsn 4722 oacomf1olem 8404 domdifsn 8850 elfiun 9198 cantnfp1lem3 9447 ssxr 11053 structcnvcnv 16863 fidomndrng 20588 elcls 22233 ist1-2 22507 nrmsep2 22516 nrmsep 22517 isnrm3 22519 isreg2 22537 hauscmplem 22566 connsub 22581 iunconnlem 22587 llycmpkgen2 22710 hausdiag 22805 trfil3 23048 isufil2 23068 filufint 23080 blcld 23670 i1fima2 24852 i1fd 24854 nbgrssvwo2 27738 pliguhgr 28857 symgcom2 31362 inunissunidif 35555 poimirlem15 35801 itg2addnclem2 35838 ntrk0kbimka 41656 ntrneicls11 41707 gneispace 41751 opndisj 46207 seposep 46230 |
Copyright terms: Public domain | W3C validator |