Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reldisj | Structured version Visualization version GIF version |
Description: Two ways of saying that two classes are disjoint, using the complement of 𝐵 relative to a universe 𝐶. (Contributed by NM, 15-Feb-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) Avoid ax-12 2175. (Revised by Gino Giotto, 28-Jun-2024.) |
Ref | Expression |
---|---|
reldisj | ⊢ (𝐴 ⊆ 𝐶 → ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 ⊆ (𝐶 ∖ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3886 | . . . 4 ⊢ (𝐴 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) | |
2 | eleq1w 2820 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
3 | eleq1w 2820 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐶 ↔ 𝑦 ∈ 𝐶)) | |
4 | 2, 3 | imbi12d 348 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) ↔ (𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐶))) |
5 | 4 | spw 2042 | . . . . 5 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) |
6 | pm5.44 546 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) → ((𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵)))) | |
7 | eldif 3876 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐶 ∖ 𝐵) ↔ (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵)) | |
8 | 7 | imbi2i 339 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐶 ∖ 𝐵)) ↔ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵))) |
9 | 6, 8 | bitr4di 292 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) → ((𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐶 ∖ 𝐵)))) |
10 | 5, 9 | syl 17 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) → ((𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐶 ∖ 𝐵)))) |
11 | 1, 10 | sylbi 220 | . . 3 ⊢ (𝐴 ⊆ 𝐶 → ((𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐶 ∖ 𝐵)))) |
12 | 11 | albidv 1928 | . 2 ⊢ (𝐴 ⊆ 𝐶 → (∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐶 ∖ 𝐵)))) |
13 | disj1 4365 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) | |
14 | dfss2 3886 | . 2 ⊢ (𝐴 ⊆ (𝐶 ∖ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐶 ∖ 𝐵))) | |
15 | 12, 13, 14 | 3bitr4g 317 | 1 ⊢ (𝐴 ⊆ 𝐶 → ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 ⊆ (𝐶 ∖ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∀wal 1541 = wceq 1543 ∈ wcel 2110 ∖ cdif 3863 ∩ cin 3865 ⊆ wss 3866 ∅c0 4237 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-v 3410 df-dif 3869 df-in 3873 df-ss 3883 df-nul 4238 |
This theorem is referenced by: disj2 4372 ssdifsn 4701 oacomf1olem 8292 domdifsn 8728 elfiun 9046 cantnfp1lem3 9295 ssxr 10902 structcnvcnv 16706 fidomndrng 20345 elcls 21970 ist1-2 22244 nrmsep2 22253 nrmsep 22254 isnrm3 22256 isreg2 22274 hauscmplem 22303 connsub 22318 iunconnlem 22324 llycmpkgen2 22447 hausdiag 22542 trfil3 22785 isufil2 22805 filufint 22817 blcld 23403 i1fima2 24576 i1fd 24578 nbgrssvwo2 27450 pliguhgr 28567 symgcom2 31072 inunissunidif 35283 poimirlem15 35529 itg2addnclem2 35566 ntrk0kbimka 41326 ntrneicls11 41377 gneispace 41421 opndisj 45869 seposep 45892 |
Copyright terms: Public domain | W3C validator |