MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldisj Structured version   Visualization version   GIF version

Theorem reldisj 4366
Description: Two ways of saying that two classes are disjoint, using the complement of 𝐵 relative to a universe 𝐶. (Contributed by NM, 15-Feb-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) Avoid ax-12 2175. (Revised by Gino Giotto, 28-Jun-2024.)
Assertion
Ref Expression
reldisj (𝐴𝐶 → ((𝐴𝐵) = ∅ ↔ 𝐴 ⊆ (𝐶𝐵)))

Proof of Theorem reldisj
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfss2 3886 . . . 4 (𝐴𝐶 ↔ ∀𝑥(𝑥𝐴𝑥𝐶))
2 eleq1w 2820 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
3 eleq1w 2820 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝐶𝑦𝐶))
42, 3imbi12d 348 . . . . . 6 (𝑥 = 𝑦 → ((𝑥𝐴𝑥𝐶) ↔ (𝑦𝐴𝑦𝐶)))
54spw 2042 . . . . 5 (∀𝑥(𝑥𝐴𝑥𝐶) → (𝑥𝐴𝑥𝐶))
6 pm5.44 546 . . . . . 6 ((𝑥𝐴𝑥𝐶) → ((𝑥𝐴 → ¬ 𝑥𝐵) ↔ (𝑥𝐴 → (𝑥𝐶 ∧ ¬ 𝑥𝐵))))
7 eldif 3876 . . . . . . 7 (𝑥 ∈ (𝐶𝐵) ↔ (𝑥𝐶 ∧ ¬ 𝑥𝐵))
87imbi2i 339 . . . . . 6 ((𝑥𝐴𝑥 ∈ (𝐶𝐵)) ↔ (𝑥𝐴 → (𝑥𝐶 ∧ ¬ 𝑥𝐵)))
96, 8bitr4di 292 . . . . 5 ((𝑥𝐴𝑥𝐶) → ((𝑥𝐴 → ¬ 𝑥𝐵) ↔ (𝑥𝐴𝑥 ∈ (𝐶𝐵))))
105, 9syl 17 . . . 4 (∀𝑥(𝑥𝐴𝑥𝐶) → ((𝑥𝐴 → ¬ 𝑥𝐵) ↔ (𝑥𝐴𝑥 ∈ (𝐶𝐵))))
111, 10sylbi 220 . . 3 (𝐴𝐶 → ((𝑥𝐴 → ¬ 𝑥𝐵) ↔ (𝑥𝐴𝑥 ∈ (𝐶𝐵))))
1211albidv 1928 . 2 (𝐴𝐶 → (∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ (𝐶𝐵))))
13 disj1 4365 . 2 ((𝐴𝐵) = ∅ ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵))
14 dfss2 3886 . 2 (𝐴 ⊆ (𝐶𝐵) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ (𝐶𝐵)))
1512, 13, 143bitr4g 317 1 (𝐴𝐶 → ((𝐴𝐵) = ∅ ↔ 𝐴 ⊆ (𝐶𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wal 1541   = wceq 1543  wcel 2110  cdif 3863  cin 3865  wss 3866  c0 4237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3066  df-v 3410  df-dif 3869  df-in 3873  df-ss 3883  df-nul 4238
This theorem is referenced by:  disj2  4372  ssdifsn  4701  oacomf1olem  8292  domdifsn  8728  elfiun  9046  cantnfp1lem3  9295  ssxr  10902  structcnvcnv  16706  fidomndrng  20345  elcls  21970  ist1-2  22244  nrmsep2  22253  nrmsep  22254  isnrm3  22256  isreg2  22274  hauscmplem  22303  connsub  22318  iunconnlem  22324  llycmpkgen2  22447  hausdiag  22542  trfil3  22785  isufil2  22805  filufint  22817  blcld  23403  i1fima2  24576  i1fd  24578  nbgrssvwo2  27450  pliguhgr  28567  symgcom2  31072  inunissunidif  35283  poimirlem15  35529  itg2addnclem2  35566  ntrk0kbimka  41326  ntrneicls11  41377  gneispace  41421  opndisj  45869  seposep  45892
  Copyright terms: Public domain W3C validator