MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldisj Structured version   Visualization version   GIF version

Theorem reldisj 4402
Description: Two ways of saying that two classes are disjoint, using the complement of 𝐵 relative to a universe 𝐶. (Contributed by NM, 15-Feb-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) Avoid ax-12 2182. (Revised by GG, 28-Jun-2024.)
Assertion
Ref Expression
reldisj (𝐴𝐶 → ((𝐴𝐵) = ∅ ↔ 𝐴 ⊆ (𝐶𝐵)))

Proof of Theorem reldisj
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ss 3915 . . . 4 (𝐴𝐶 ↔ ∀𝑥(𝑥𝐴𝑥𝐶))
2 eleq1w 2816 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
3 eleq1w 2816 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝐶𝑦𝐶))
42, 3imbi12d 344 . . . . . 6 (𝑥 = 𝑦 → ((𝑥𝐴𝑥𝐶) ↔ (𝑦𝐴𝑦𝐶)))
54spw 2035 . . . . 5 (∀𝑥(𝑥𝐴𝑥𝐶) → (𝑥𝐴𝑥𝐶))
6 pm5.44 542 . . . . . 6 ((𝑥𝐴𝑥𝐶) → ((𝑥𝐴 → ¬ 𝑥𝐵) ↔ (𝑥𝐴 → (𝑥𝐶 ∧ ¬ 𝑥𝐵))))
7 eldif 3908 . . . . . . 7 (𝑥 ∈ (𝐶𝐵) ↔ (𝑥𝐶 ∧ ¬ 𝑥𝐵))
87imbi2i 336 . . . . . 6 ((𝑥𝐴𝑥 ∈ (𝐶𝐵)) ↔ (𝑥𝐴 → (𝑥𝐶 ∧ ¬ 𝑥𝐵)))
96, 8bitr4di 289 . . . . 5 ((𝑥𝐴𝑥𝐶) → ((𝑥𝐴 → ¬ 𝑥𝐵) ↔ (𝑥𝐴𝑥 ∈ (𝐶𝐵))))
105, 9syl 17 . . . 4 (∀𝑥(𝑥𝐴𝑥𝐶) → ((𝑥𝐴 → ¬ 𝑥𝐵) ↔ (𝑥𝐴𝑥 ∈ (𝐶𝐵))))
111, 10sylbi 217 . . 3 (𝐴𝐶 → ((𝑥𝐴 → ¬ 𝑥𝐵) ↔ (𝑥𝐴𝑥 ∈ (𝐶𝐵))))
1211albidv 1921 . 2 (𝐴𝐶 → (∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ (𝐶𝐵))))
13 disj1 4401 . 2 ((𝐴𝐵) = ∅ ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵))
14 df-ss 3915 . 2 (𝐴 ⊆ (𝐶𝐵) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ (𝐶𝐵)))
1512, 13, 143bitr4g 314 1 (𝐴𝐶 → ((𝐴𝐵) = ∅ ↔ 𝐴 ⊆ (𝐶𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wcel 2113  cdif 3895  cin 3897  wss 3898  c0 4282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-v 3439  df-dif 3901  df-in 3905  df-ss 3915  df-nul 4283
This theorem is referenced by:  disj2  4407  ssdifsn  4739  oacomf1olem  8485  domdifsn  8980  elfiun  9321  cantnfp1lem3  9577  ssxr  11189  structcnvcnv  17066  fidomndrng  20690  elcls  22989  ist1-2  23263  nrmsep2  23272  nrmsep  23273  isnrm3  23275  isreg2  23293  hauscmplem  23322  connsub  23337  iunconnlem  23343  llycmpkgen2  23466  hausdiag  23561  trfil3  23804  isufil2  23824  filufint  23836  blcld  24421  i1fima2  25608  i1fd  25610  nbgrssvwo2  29342  pliguhgr  30468  symgcom2  33060  ssdifidlprm  33430  inunissunidif  37440  poimirlem15  37695  itg2addnclem2  37732  ntrk0kbimka  44156  ntrneicls11  44207  gneispace  44251  opndisj  49027  seposep  49050
  Copyright terms: Public domain W3C validator