![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reldisj | Structured version Visualization version GIF version |
Description: Two ways of saying that two classes are disjoint, using the complement of 𝐵 relative to a universe 𝐶. (Contributed by NM, 15-Feb-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) Avoid ax-12 2169. (Revised by Gino Giotto, 28-Jun-2024.) |
Ref | Expression |
---|---|
reldisj | ⊢ (𝐴 ⊆ 𝐶 → ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 ⊆ (𝐶 ∖ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3967 | . . . 4 ⊢ (𝐴 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) | |
2 | eleq1w 2814 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
3 | eleq1w 2814 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐶 ↔ 𝑦 ∈ 𝐶)) | |
4 | 2, 3 | imbi12d 343 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) ↔ (𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐶))) |
5 | 4 | spw 2035 | . . . . 5 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) |
6 | pm5.44 541 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) → ((𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵)))) | |
7 | eldif 3957 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐶 ∖ 𝐵) ↔ (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵)) | |
8 | 7 | imbi2i 335 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐶 ∖ 𝐵)) ↔ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵))) |
9 | 6, 8 | bitr4di 288 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) → ((𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐶 ∖ 𝐵)))) |
10 | 5, 9 | syl 17 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) → ((𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐶 ∖ 𝐵)))) |
11 | 1, 10 | sylbi 216 | . . 3 ⊢ (𝐴 ⊆ 𝐶 → ((𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐶 ∖ 𝐵)))) |
12 | 11 | albidv 1921 | . 2 ⊢ (𝐴 ⊆ 𝐶 → (∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐶 ∖ 𝐵)))) |
13 | disj1 4449 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) | |
14 | dfss2 3967 | . 2 ⊢ (𝐴 ⊆ (𝐶 ∖ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐶 ∖ 𝐵))) | |
15 | 12, 13, 14 | 3bitr4g 313 | 1 ⊢ (𝐴 ⊆ 𝐶 → ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 ⊆ (𝐶 ∖ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∀wal 1537 = wceq 1539 ∈ wcel 2104 ∖ cdif 3944 ∩ cin 3946 ⊆ wss 3947 ∅c0 4321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-v 3474 df-dif 3950 df-in 3954 df-ss 3964 df-nul 4322 |
This theorem is referenced by: disj2 4456 ssdifsn 4790 oacomf1olem 8566 domdifsn 9056 elfiun 9427 cantnfp1lem3 9677 ssxr 11287 structcnvcnv 17090 fidomndrng 21126 elcls 22797 ist1-2 23071 nrmsep2 23080 nrmsep 23081 isnrm3 23083 isreg2 23101 hauscmplem 23130 connsub 23145 iunconnlem 23151 llycmpkgen2 23274 hausdiag 23369 trfil3 23612 isufil2 23632 filufint 23644 blcld 24234 i1fima2 25428 i1fd 25430 nbgrssvwo2 28886 pliguhgr 30006 symgcom2 32515 inunissunidif 36559 poimirlem15 36806 itg2addnclem2 36843 ntrk0kbimka 43092 ntrneicls11 43143 gneispace 43187 opndisj 47622 seposep 47645 |
Copyright terms: Public domain | W3C validator |