MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldisj Structured version   Visualization version   GIF version

Theorem reldisj 4403
Description: Two ways of saying that two classes are disjoint, using the complement of 𝐵 relative to a universe 𝐶. (Contributed by NM, 15-Feb-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) Avoid ax-12 2180. (Revised by GG, 28-Jun-2024.)
Assertion
Ref Expression
reldisj (𝐴𝐶 → ((𝐴𝐵) = ∅ ↔ 𝐴 ⊆ (𝐶𝐵)))

Proof of Theorem reldisj
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ss 3919 . . . 4 (𝐴𝐶 ↔ ∀𝑥(𝑥𝐴𝑥𝐶))
2 eleq1w 2814 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
3 eleq1w 2814 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝐶𝑦𝐶))
42, 3imbi12d 344 . . . . . 6 (𝑥 = 𝑦 → ((𝑥𝐴𝑥𝐶) ↔ (𝑦𝐴𝑦𝐶)))
54spw 2035 . . . . 5 (∀𝑥(𝑥𝐴𝑥𝐶) → (𝑥𝐴𝑥𝐶))
6 pm5.44 542 . . . . . 6 ((𝑥𝐴𝑥𝐶) → ((𝑥𝐴 → ¬ 𝑥𝐵) ↔ (𝑥𝐴 → (𝑥𝐶 ∧ ¬ 𝑥𝐵))))
7 eldif 3912 . . . . . . 7 (𝑥 ∈ (𝐶𝐵) ↔ (𝑥𝐶 ∧ ¬ 𝑥𝐵))
87imbi2i 336 . . . . . 6 ((𝑥𝐴𝑥 ∈ (𝐶𝐵)) ↔ (𝑥𝐴 → (𝑥𝐶 ∧ ¬ 𝑥𝐵)))
96, 8bitr4di 289 . . . . 5 ((𝑥𝐴𝑥𝐶) → ((𝑥𝐴 → ¬ 𝑥𝐵) ↔ (𝑥𝐴𝑥 ∈ (𝐶𝐵))))
105, 9syl 17 . . . 4 (∀𝑥(𝑥𝐴𝑥𝐶) → ((𝑥𝐴 → ¬ 𝑥𝐵) ↔ (𝑥𝐴𝑥 ∈ (𝐶𝐵))))
111, 10sylbi 217 . . 3 (𝐴𝐶 → ((𝑥𝐴 → ¬ 𝑥𝐵) ↔ (𝑥𝐴𝑥 ∈ (𝐶𝐵))))
1211albidv 1921 . 2 (𝐴𝐶 → (∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ (𝐶𝐵))))
13 disj1 4402 . 2 ((𝐴𝐵) = ∅ ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵))
14 df-ss 3919 . 2 (𝐴 ⊆ (𝐶𝐵) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ (𝐶𝐵)))
1512, 13, 143bitr4g 314 1 (𝐴𝐶 → ((𝐴𝐵) = ∅ ↔ 𝐴 ⊆ (𝐶𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wcel 2111  cdif 3899  cin 3901  wss 3902  c0 4283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-v 3438  df-dif 3905  df-in 3909  df-ss 3919  df-nul 4284
This theorem is referenced by:  disj2  4408  ssdifsn  4740  oacomf1olem  8479  domdifsn  8973  elfiun  9314  cantnfp1lem3  9570  ssxr  11179  structcnvcnv  17061  fidomndrng  20686  elcls  22986  ist1-2  23260  nrmsep2  23269  nrmsep  23270  isnrm3  23272  isreg2  23290  hauscmplem  23319  connsub  23334  iunconnlem  23340  llycmpkgen2  23463  hausdiag  23558  trfil3  23801  isufil2  23821  filufint  23833  blcld  24418  i1fima2  25605  i1fd  25607  nbgrssvwo2  29338  pliguhgr  30461  symgcom2  33048  ssdifidlprm  33418  inunissunidif  37408  poimirlem15  37674  itg2addnclem2  37711  ntrk0kbimka  44071  ntrneicls11  44122  gneispace  44166  opndisj  48933  seposep  48956
  Copyright terms: Public domain W3C validator