| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldisj | Structured version Visualization version GIF version | ||
| Description: Two ways of saying that two classes are disjoint, using the complement of 𝐵 relative to a universe 𝐶. (Contributed by NM, 15-Feb-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) Avoid ax-12 2178. (Revised by GG, 28-Jun-2024.) |
| Ref | Expression |
|---|---|
| reldisj | ⊢ (𝐴 ⊆ 𝐶 → ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 ⊆ (𝐶 ∖ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ss 3931 | . . . 4 ⊢ (𝐴 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) | |
| 2 | eleq1w 2811 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 3 | eleq1w 2811 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐶 ↔ 𝑦 ∈ 𝐶)) | |
| 4 | 2, 3 | imbi12d 344 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) ↔ (𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐶))) |
| 5 | 4 | spw 2034 | . . . . 5 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) |
| 6 | pm5.44 542 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) → ((𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵)))) | |
| 7 | eldif 3924 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐶 ∖ 𝐵) ↔ (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵)) | |
| 8 | 7 | imbi2i 336 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐶 ∖ 𝐵)) ↔ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵))) |
| 9 | 6, 8 | bitr4di 289 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) → ((𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐶 ∖ 𝐵)))) |
| 10 | 5, 9 | syl 17 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) → ((𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐶 ∖ 𝐵)))) |
| 11 | 1, 10 | sylbi 217 | . . 3 ⊢ (𝐴 ⊆ 𝐶 → ((𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐶 ∖ 𝐵)))) |
| 12 | 11 | albidv 1920 | . 2 ⊢ (𝐴 ⊆ 𝐶 → (∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐶 ∖ 𝐵)))) |
| 13 | disj1 4415 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) | |
| 14 | df-ss 3931 | . 2 ⊢ (𝐴 ⊆ (𝐶 ∖ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐶 ∖ 𝐵))) | |
| 15 | 12, 13, 14 | 3bitr4g 314 | 1 ⊢ (𝐴 ⊆ 𝐶 → ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 ⊆ (𝐶 ∖ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ∖ cdif 3911 ∩ cin 3913 ⊆ wss 3914 ∅c0 4296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-v 3449 df-dif 3917 df-in 3921 df-ss 3931 df-nul 4297 |
| This theorem is referenced by: disj2 4421 ssdifsn 4752 oacomf1olem 8528 domdifsn 9024 elfiun 9381 cantnfp1lem3 9633 ssxr 11243 structcnvcnv 17123 fidomndrng 20682 elcls 22960 ist1-2 23234 nrmsep2 23243 nrmsep 23244 isnrm3 23246 isreg2 23264 hauscmplem 23293 connsub 23308 iunconnlem 23314 llycmpkgen2 23437 hausdiag 23532 trfil3 23775 isufil2 23795 filufint 23807 blcld 24393 i1fima2 25580 i1fd 25582 nbgrssvwo2 29289 pliguhgr 30415 symgcom2 33041 ssdifidlprm 33429 inunissunidif 37363 poimirlem15 37629 itg2addnclem2 37666 ntrk0kbimka 44028 ntrneicls11 44079 gneispace 44123 opndisj 48891 seposep 48914 |
| Copyright terms: Public domain | W3C validator |