HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  qlaxr1i Structured version   Visualization version   GIF version

Theorem qlaxr1i 31664
Description: One of the conditions showing C is an ortholattice. (This corresponds to axiom "ax-r1" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
qlaxr1.1 𝐴C
qlaxr1.2 𝐵C
qlaxr1.3 𝐴 = 𝐵
Assertion
Ref Expression
qlaxr1i 𝐵 = 𝐴

Proof of Theorem qlaxr1i
StepHypRef Expression
1 qlaxr1.3 . 2 𝐴 = 𝐵
21eqcomi 2749 1 𝐵 = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108   C cch 30961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-cleq 2732
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator